АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ЦИКЛИЧЕСКИЕ КОДЫ

Читайте также:
  1. Биологически важные гетероциклические соединения
  2. В водных растворах (глюкоза и фруктоза) существуют в трех взаимопревращающихся формах, две из которых циклические, что объясняется таутомерией моносахаридов в растворах.

Основные понятия

Поиск более простых процедур кодирования и декодирования привел к появлению циклических кодов.

Циклические коды – линейные блочные коды, обладающие свойством цикличности: если - кодовое слово циклического кода, то его циклическая перестановка также является кодовым словом.

Пример 4.1:

.

Для построения кода достаточно задать одно кодовое слово. Другие кодовые слова образуются из исходного путем циклических перестановок и их линейных преобразований.

Все преобразования кодовых слов циклических кодов производятся в виде математических операций над полиномами (многочленами). Для этого кодовые слова представляются в форме полиномов:

,

где - коэффициенты полинома;

- символическая переменная.

Пример 4.2:

.

Операции сложения, вычитания, умножения и деления полиномов выполняются по обычным арифметическим правилам, только вычитание заменяется сложением, которое производится как сложение по модулю два.

Циклические коды задаются с помощью порождающего (образующего) и проверочного полиномов.

Любой полином степени , который делит без остатка полином вида , называется порождающим полиномом:

,

где - коэффициенты полинома.

Полиномы всех кодовых слов делятся без остатка на порождающий полином.

Порождающая матрица строится на основе полинома .

Для несистематического циклического кода:

.

Для систематического циклического кода:

,

где - прямоугольная подматрица , строками которой являются коэффициенты полинома остатка от деления на полином , где - номер строки.

Пример 4.3:

Показать, что полином является порождающим для 7-разрядного циклического кода. Записать матрицу .

Для несистематического кода:

.

Для систематического кода:

.

Результат деления полинома вида на порождающий полином называется проверочным полиномом:

,

где - коэффициенты полинома.

При отсутствии ошибок в принятом кодовом слове остаток от деления произведения на полином вида равен нулю:

.

Проверочная матрица строится на основе полинома .

Для несистематического циклического кода:

Для систематического циклического кода:

.

ДОМАШНЕЕ ЗАДАНИЕ:

2. Найти полином для задачи из примера 4.3. Записать матрицу .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)