|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Электронный механизм ЭДС индукции
Рисунок 2
На рисунке 2 изображена рамка с подвижной стороной. Магнитное поле направлено от нас. Тянем подвижную сторону со скоростью . На заряд +q действует сила Лоренца Перемещающая заряд на расстояние l и совершающая работу Результат тот же, значит: электронный механизм возникновения ЭДС индукции - это работа компоненты силы Лоренца. Таким образом, возбуждение э.д.с. индукции при движения контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.
54. Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре: (6) где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: Индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. Применяя к явлению самоиндукции закон Фарадея, получим, что э. д.с. самоиндукции Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и (10) где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем возрастает, то т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание.
Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
55*. Рассчитаем индуктивность бесконечно длинного соленоида (рис.4).
Рисунок 4
Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, равна Магнитный поток сквозь один виток соленоида площадью S равен а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением, (7) Согласно (7), полный магнитный поток сквозь соленоид (потокосцепление) равен Подставив это выражение в формулу (6), получим (8)
т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости m вещества, из которого изготовлен сердечник соленоида. Обозначим через число витков на единицу длины Тогда формулу (8) можно будет переписать в виде: (9) 56. Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью . Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью, равна , где α угол меду векторами и .
Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. В Международной системе единиц (СИ): где — магнитная постоянная.
Для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика: где — магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул.
Связь между J и напряженностью магнитного поля H в диамагнитных и парамагнитныхматериалах, обычно линейна (по крайней мере, при не слишком больших величинах намагничивающего поля): где χ m называют магнитной восприимчивостью. В ферромагнитных материалах нет однозначной связи между J и H из-за магнитного гистерезиса и чтобы описать зависимость используют тензор магнитной восприимчивости. Магнитная индукция определяется через намагниченность как: 57. Магнитная проницаемость и магнитная восприимчивость. Их определения и связь между ними. Магнитная восприимчивость — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе. Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией {B} и напряжённостью магнитного поля {H} в веществе. Магнитная проницаемость связана с магнитной восприимчивостью χ следующим образом: в СИ: в Гауссовой системе: 58. Циркуляция вектора напряженности магнитного поля. Теорема о циркуляции магнитного поля. Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции. Здесь B — вектор магнитной индукции, j — плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |