|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КОНТРОЛЬНАЯ РАБОТА №21. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ЭЛЕМЕНТОВ R,L,C В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА. По второму закону Кирхгофа: U = UR + UL + UC
Реактивное сопротивление в зависимости от знака может иметь индуктивный (j>0) или емкостный (j<0) характер. При определении полного сопротивления цепи z необходимо учитывать, что активные сопротивления складываются арифметически, реактивные сопротивления складываются алгебраически (индуктивное сопротивление имеет положительное значение, а емкостное сопротивление - отрицательное значение), а активные и реактивные сопротивления складываются между собой геометрически. Фазовый сдвиг между напряжением источника и током, протекающим по рассматриваемой цепи, определяется соотношением сопротивлений . Если все стороны полученного треугольника, разделить на ток i (который общий для всех элементов), то получим треугольник сопротивлений:
R = Z cos j, X = Z sin j. .
А если умножить стороны треугольника напряжений на ток і, то получим треугольник мощностей: , где: S – полная мощность ВА; Q – реактивная мощность ВАР; P – активная мощность; сos j – коэффициент мощности; Аналогично можно получить треугольник проводи мости. Отметим, что все полученные треугольники – подобны.
2. ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ЭЛЕМЕНТОВ R,L,C В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА. Для параллельного соединения элементов по первому закону Кирхгофа можем записать: ; где: ; тогда: Введем понятие полной проводимости: , которая, как и полное сопротивление, состоит из активной и реактивной составляющей , или – активная проводимость; – реактивная проводимость. Тогда для рассматриваемой цепи: . Для каждой параллельной ветви можно записать , .
На рисунке слева представлена векторная диаграмма для данного примера. Где:
.
Приложение №2 Задание на контрольную работу №2. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |