АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Alternating-Current (AC) Generators (Alternators)

Читайте также:
  1. Direct-Current (DC) Generators
  2. Electric generators and motors

A simple generator without a commutator will produce an electric current that alternates in direction as the armature revolves. Such alternating current is advantageous for electric power transmission, and hence most large electric generators are of the AC type. In its simplest form, an AC generator differs from a DC generator in only two particulars: the ends of its armature winding are brought out to solid unsegmented slip rings on the generator shaft instead of to commutators, and the field coils are energized by an external DC source rather than by the generator itself. Low-speed AC generators are built with as many as 100 poles, both to improve their efficiency and to attain more easily the frequency desired. Alternators driven by high-speed turbines, however, are often two-pole machines. The frequency of the current delivered by an AC generator is equal to half the product of the number of poles and the number of revolutions per second of the armature.

It is often desirable to generate as high a voltage as possible, and rotating armatures are not practical in such applications because of the possibility of sparking between brushes and slip rings and the danger of mechanical failures that might cause short circuits. Alternators are therefore constructed with a stationary armature within which revolves a rotor composed of a number of field magnets. The principle of operation is exactly the same as that of the AC generator described, except that the magnetic field (rather than the conductors of the armature) is in motion.

The current generated by the alternators described above rises to a peak, sinks to zero, drops to a negative peak, and rises again to zero a number of times each second, depending on the frequency for which the machine is designed. Such current is known as single-phase alternating current. If, however, the armature is composed of two windings, mounted at right angles to each other, and provided with separate external connections, two current waves will be produced, each of which will be at its maximum when the other is at zero. Such current is called two-phase alternating current. If three armature windings are set at 120° to each other, current will be produced in the form of a triple wave, known as three-phase alternating current. A larger number of phases may be obtained by increasing the number of windings in the armature, but in modern electrical-engineering practice three-phase alternating current is most commonly used, and the three-phase alternator is the dynamoelectric machine typically employed for the generation of electric power. Voltages as high as 13,200 are common in alternators.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)