АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы получения информации по снимкам – дешифрирование, фотограмметрическая обработка, компьютерные технологии

Читайте также:
  1. B) должен хорошо знать только физико-химические методы анализа
  2. I. Естественные методы
  3. III. Обеспечение деятельности аккредитованных представителей средств массовой информации
  4. V. Способы и методы обеззараживания и/или обезвреживания медицинских отходов классов Б и В
  5. V1: Методы анализа электрических цепей постоянного тока
  6. V1: Переходные процессы в линейных электрических цепях, методы анализа переходных процессов
  7. V2: МЕТОДЫ ГИСТОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
  8. V2: Цитология и методы цитологии
  9. А. Личные мотивы выдачи информации
  10. Абсорбционный чиллер предназначен для получения холодной воды, которая в последующем может использоваться в качестве хладагента в системах кондиционирования.
  11. Абстрактные модели защиты информации
  12. Аварийная карточка системы информации об опасности.

Дешифрирование должно дать ответ на основной вопрос — что изображено на снимке? Оно позволяет получать предметную, тематическую(в основном качественную) информацию об изучаемомобъекте или процессе, его связях с окружающими объектами. Процесс дешифрирования включает стадии: обнаружение, распознавание и интерпретацию, а также определение качественных и количественных характеристик объектов и представление результатов дешифрирования в графической (картографической), цифровой или текстовой форме. Различают дешифрирование снимков военное, топографическое, геологическое, сельскохозяйственное и др. Под дешифрированием всегда понималось извлечение качественной геоинформации со снимков при их непосредственном рассматривании. В настоящее время это основной и наиболее распространенный способ извлечения информации из снимков.

Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня географической подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Фотограмметрическая обработка призвана дать ответ на вопрос, где находится изучаемый объект и каковы его геометрические характеристики — размер, форма. Она позволяет определять

по снимкам плановое и пространственное положение объектов и их изменение во времени. Для фотограмметрических измерений снимков применяют специальные прецизионные оптико-механи-

ческие приборы, а также компьютерные комплексы со специализированным программным обеспечением.

Компьютерные технологии. Сейчас разработаны многие сотни алгоритмов и программ компьютерной обработки изображений. Для обработки аэрокосмических снимков на персональных компьютерах можно использовать коммерческое программное обеспечение общего назначения, такое, как Adobe Photoshop, Corel PHOTO-PAINT. Значительно большие возможности предоставляют профессиональные программные продукты, такие как ERDAS Imagine, Ег Mapper, ENVI. На отечественном рынке представлены пакеты специализированных программ, предназначенных для решения узких задач, например, топографического картографирования на цифровых фотограмметрических системах PHOTOMOD, Талка, ЦНИИГАиК (Центральный научно-исследовательский институт геодезии, аэросъемки и картографии). Географ должен уметь выбрать оптимальный вариант обработки из многих возможных, предоставляемых коммерческим программным обеспечением.

Современные компьютерные технологии позволяют решать следующие группы задач:

Визуализация цифровых снимков; геометрические и яркостные преобразования снимков, включая их коррекцию; конструирование новых производных изображений по первичным снимкам; определение количественных характеристик объектов; компьютерное дешифрирование снимков (классификация).

Наиболее сложной является задача компьютерного (автоматизированного) дешифрирования – это фундаментальная проблема аэрокосмического зондирования.

Формальная задача компьютерного дешифрирования сводится к классификации-последовательной «сортировке» всех пикселов цифрового снимка на несколько групп. Для этого предложены алгоритмы классификации двух видов — с обучением и без обучения, или кластеризации. При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями. При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам. Достоверность компьютерного дешифрирования составляет в среднем 70—85 %, заметно падая с увеличением дешифрируемых объектов.

Достижения в области полной автоматизации дешифрирования пока скромны. Специалисты видят решение проблемы автоматизации дешифрирования в объединении формализованных знаний высококвалифицированных дешифровщиков (экспертов) с возможностями современных компьютеров, т. е. в создании компьютерных экспертных систем.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)