|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Подвод воздуха, 2 — колосниковая решетка, 3— слой топлива, 4 — топочная камера
Топки с ручным обслуживанием применяют в настоящее время только для котлов малой мощности (чугунных секционных, жаротрубных и др.). Для котлов мощностью 2 т/ч и выше применяют топки с механизированной загрузкой топлива. В топках с колосниковой цепной решеткой все операции, начиная от подачи топлива на решетку и кон чая удалением с нее шлака, полностью механизированы. Цепные решетки выпускают с прямым ходом (движение полотна колосниковой решетки от фронтовой стены топки к задней) и обратным (движение полотна решетки в сторону фронта). Они предназначены для слоевого сжигания бурых и каменных углей, антрацитов и кускового торфа в топках котлов паропроизводительностью до 35 т/ч. Для повышения устойчивости слоя и уменьшения потери с уносом было бы целесообразно увеличение размеров топливных частиц. Однако это приведет к уменьшению относительно площади поверхности реагирования и снижению скорости сгорания топлива. На практике в слоевых топках сжигают твердое топливо с частицами 20—30 мм и более. Закон измельчения топлива: затрата энергии на измельчение топлива прямопропорциональна величине, образующейся поверхности пыли. При слоевом процессе количество горящего топлива на решетке составляет около 700—1000 кг на 1 м3 объема слоя. Процесс в кипящем слое. При увеличении скорости дутья создаваемая потоком подъемная сила может достигнуть значения, равного силе тяжести частиц, и устойчивость частиц в слое нарушается; соответствующая этому скорость дутья называется критической. С дальнейшим увеличением интенсивности дутья начинается «кипение» слоя, состоящее в том, что основная масса топливных частиц поднимается над решеткой и совершает возвратно-поступательное движение вверх и вниз; при этом происходит интенсивное перемешивание топлива с окислителем. В кипящем слое скорость дутья превышает предел устойчивости плотного слоя, однако средняя скорость газа в топке над слоем далека от скорости витания основной массы частиц, т.е. скорости, при которой частицы оказываются взвешенными в потоке. По сравнению с исходным (плотным) слоем при кипении слой увеличивается в объеме в 1,5—2 раза. В 1 м3 кипящего слоя одновременно находится и реагирует около 400—600 кг топлива. Частицы топлива совершают в слое возвратно-поступательные движения до тех пор, пока их масса не уменьшится настолько, что они выносятся из слоя газовым потоком и догорают в потоке газов над слоем. На практике процессы в кипящем слое осуществляются для материалов с возможно более равномерным составом мелких частиц. Топки с кипящим слоем применяют для котлов малой и средней мощности. Широкое применение они находят также при обжиге различных серосодержащих материалов (колчедана, медной и цинковой руд и др.).
Модернизированная беспровальная цепная решетка прямого хода БЦР-М. показана на рис. 3. Топливо из угольного ящика 3 поступает на переднюю часть решетки, где подсушивается горячим воздухом и за счет теплоты, отраженной сводами топки, загорается и сгорает по мере движения полотна. Задняя часть решетки перекрыта шлакоснимателем 8, который задерживает на конце полотна шлак и остатки несгоревшего топлива для окончательного сжигания. По мере накопления шлак сбрасывается в шлаковый бункер. Положение шлакоснимателя регулируется вручную с помощью цепей и рычагов. Рис.3. Модернизированная беспровальная цепная решетка прямого хода (БЦР-М) 1- фронтовой кожух, 2,9- передний и задний валы решетки, 3- угольный ящик, 4- рама, 5- полотно колосниковой решетки, 6 - охлаждающая панель, 7 - междузонные перегородки, 8 - шлакосниматель, 10 - опорные катки, 11- болты крепления балок нижнего настила, 12 - затворы бункеров, 13 - болты крепления башмаков, 14 – башмак рамы.
Топки для камерного сжигания топлива. В камерных топках (рис.4) топливо сжигается во взвешенном состоянии. В них можно сжигать твердое, жидкое и газообразное топливо. Топочная камера 1 представляет собой призматическую камеру прямоугольного или квадратного сечения, в верхней части которой устраивается газовое окно 5, предназначенное для выхода дымовых газов, а в нижней — под 6. Конструктивное исполнение пода определяется видом сжигаемого топлива. При сжигании газообразного и жидкого топлива, а также твердого с жидким шлакоудалением под выполняют горизонтальным или слабонаклоненным, а при твердом шлакоудалении - с крутонаклонными скатами 8, образующими так называемую холодную воронку. Для удаления жидкого шлака в поде имеется летка 7. Рис.4. Топочные устройства для газа и мазута (а) и для твердого топлива с жидким и твердым шлакоудалением (б,в) Внутренние стенки топочной камеры покрыты трубами, образующими топочные экраны 3, внутри которых непрерывно движется рабочая среда - пароводяная смесь, воспринимающая часть теплоты сжигаемого топлива. Для снижения потерь теплоты топочные камеры имеют теплоизоляционную обмуровку 4. Топливовоздушная смесь, состоящая из угольной пыли и воздуха, подается в топочную камеру через горелочные устройства (горелки) 2, к которым подводится необходимый для сжигания топлива дополнительный воздух (его называют вторичным в отличие от воздуха, с помощью которого транспортируется угольная пыль, называемого первичным). Циклонные (вихревые) топки. Недостаток сжигания топлива в факеле заключается в том, что его частицы находятся в топочном объеме ограниченное время (2—3 с), определяемое скоростью движения факела и продуктов сгорания в топке. Рис.5. Схема горизонтального циклонного предтопка Циклонные вихревые топки лишены этого недостатка. К топке котла пристраивается цилиндрический предтопок — циклон (рис.5), в котором пылевоздушная смесь энергично закручивается по спирали вторичным воздухом 2. Внутренняя поверхность циклона защищена ошипованными экранными трубами, покрытыми огнеупорной набивной массой. Мелкие частицы топлива сгорают на лету в объеме предтопка. Крупные частицы топлива центробежной силой отбрасываются на стены и полностью сгорают на пленке из жидкого шлака независимо от длительности пребывания продуктов сгорания в циклоне и скорости их перетекания в камеру дожигания (топку) через амбразуру 3 циклона. В предтопке улавливается от 60 до 85% золы, которая в виде жидкого шлака удаляется через летку 4. Несмотря на ряд преимуществ, циклонные топки менее надежны в эксплуатации и более трудоемки при ремонте. Они не получили широкого распространения. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |