Число е
Рассмотрим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1). Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…
Док-ем формулу lim(n->∞)(1+1/n)^n(в степени n)=е
yN= ; zN=yN +
1) yN монотонно растет
2) yN<zN
3) zN-yN®0
4) zN монотонно убывает
Доказателство:
zN-zN+1 = yN + - yN+1 - = + - =
2=y1<yN<zN<z1=3
e = Lim yN = Lim zN - по лемме о вложенных промежутках имеем: yN< e <zN = yN + 1/(n*n!)
Если через qN обозначить отношение разности e - yN к числу 1/(n*n!), то можно записать e - yN = qN/(n*n!), заменяя yN его развернутым выражением получаем e = yN + qN/(n*n!), qÎ(0,1)
Число e иррационально:
Доказательство(от противного): Пусть e =m/n, mÎZ, nÎN
m/n = e = yN + qN/(n*n!)
m*(n-1)!= yN*n! + qN/n, где (m*(n-1)! & yN*n!)ÎZ, (qN/n)ÏZ => противоречие 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Поиск по сайту:
|