АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Понятие локального экстремума, необходимое условие локального экстремума

Читайте также:
  1. I. Понятие о синонимии
  2. I. Понятие распределительной (сбытовой) логистики
  3. II. Понятие о семе и семеме.
  4. VII. УСЛОВИЕ ПОДВЕДЕНИЯ ИТОГОВ
  5. А) Ожидается наше желание, как необходимое условие.
  6. Административное наказание: понятие, виды
  7. Административное правонарушение: понятие, состав
  8. Акты применения правовых норм: понятие, особенности, виды.
  9. Акции и облигации: понятие и виды.
  10. Амортизация основных средств: понятие, назначение, методы расчёта.
  11. Артериолы, капилляры, венулы: функция и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.
  12. Атмосферный воздух как объект правовой охраны. Юридическое понятие «атмосферный воздух»

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-d, х0+d), для всех точек х которой выполняется неравенство f(х)£f(х0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f(х0).

Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть 0-d, х0+d) - та окрестность, для точек которой выполняется неравенство

       
   
 

Здесь возможно как 1 и 2 варианты, но | ∆х| <δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому

 
 

При ∆х<0, будет ∆y:∆x ≥0, поэтому


По условию теоремы, существует производная f'(х0) А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)