АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Понятие дифференциала ф-ии. Геом.смысл приблеженных вычислений с помощью dy

Читайте также:
  1. I. Понятие о синонимии
  2. I. Понятие распределительной (сбытовой) логистики
  3. II. Понятие о семе и семеме.
  4. Автоматическая настройка УОЗ на атмосферном двигателе с помощью функции замеров ускорения.
  5. Автоматическое управление движением с помощью конечных выключателей, пример.
  6. Административное наказание: понятие, виды
  7. Административное правонарушение: понятие, состав
  8. Акты применения правовых норм: понятие, особенности, виды.
  9. Акции и облигации: понятие и виды.
  10. Амортизация основных средств: понятие, назначение, методы расчёта.
  11. Артериолы, капилляры, венулы: функция и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.
  12. Атмосферный воздух как объект правовой охраны. Юридическое понятие «атмосферный воздух»

Опр. Дифференциалом ф-ии y=f(x) в точке х0 н-ся главная, линейная от-но ▲х, часть приращенная ф-ии в этой точке. Для обозначения дифференциала ф-ии используют символ dy.

Из Df дифференцируемости следует, что приращение дифф. ф-ии можно представить в виде

Из равенства нулю предела следует, что - б.м. более высшего порядка малости, чем , и

Поскольку - б.м. одного порядка малости.

- б.м. одного порядка малости - б.м. эквивылентные, т.е.

Пусть

 

**************

Zm1: и х – независимые переменные, т.е.

Zm1: для независимых переменных.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)