|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) граньМн-во операций над мн-вами Мн-во – совокупность объектов, обладающих определенным св-вом. Пересечением двух мн-в А и В н-ся мн-во С, состоящее из Эл-ов, принадлежащих как мн-ву А, так и мн-ву В.(А={1,2,3}, B={2,5}, AΩB={2}) Объединением двух мн-в А и В н-ся мн-во С, состоящее из Эл-ов, принадлежащих хотя бы одному из мн-в А или В.(A={1,2,3}, B={2,5} AuB={1,2,3,5}Разностью С двух мн-в А и В н-ся мн-во, состоящ. Из Эл-ов мн-ва А и не принадл. В(Разностью мн-ва целых чисел и мн-ва четных чисел явл. Мн-во нечетных чисел) Если А подмн-во В, то разность В\А н-ся дополнением А до В. Дополнением мн-ва А н-ся мн-во, состоящ. Из Эл-ов универсального мн-ва не принадлежащих мн-ву А. Мн-во вещ.чисел, основные св-ва точных граней Наиболее употребительные числовые мн-ва: N-мн-во натуральных чисел Q-мн-во рациональных чисел R-мн-во вещественных чисел C-мн-во комплексных чисел (Cегмент: [a,b]={x|a<x≤b} Полунтервал: (a,b]={x|a<x≤b} [a,b)={x|a≤x<b} [a,+∞)={x|a≤x<∞} (-∞,a]={x|-∞<x≤a}Интервал: (a,b)={x|a<x<b} (a,+∞)={x|a<x<+∞} (-∞,a)={x|-∞<x<a} R={x|-∞<x<∞}=(-∞,+∞)). Все эти мн-ва н-ся промежутками a,b –концами промежутков. [a,b],(a,b),[a,b),(a,b] – конечные промежутки, остальные-бесконечные! +можно взять из 3 вопроса Грани числовых мн-в, св-во граней Пусть Х – непустое мн-во веществ. чисел. Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во. Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено. Точные грани числовых мн-в Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х*, то оно min мн-ва Х Пример Х=[0,1) то max[0,1) не $. min [0,1)=0 Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва. Верхн. грань – supX=x*, а нижн. грань infX=x* Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань. Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. Чисел. Th о сущ. т.в.г. и т.н.г. Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань. Док-во: Пусть Х непустное мн-во, ограниченное сверху. Тогда Y- мн-во чисел, ограничивающих мн-во Х сверху, не пусто. Из определения верхней грани следует, что для любого х€Х и y€Y любого выполняется нер-во х≤у. В силу св-ва непрерывности вещ.чисел существует такое с, что для любых х и у выполняется нер-во х≤с≤у. Из первого нер-ва следует, что число с ограничивает мн-во Х сверху, т.е. является верхней гранью. Из второго нер-ва следует, что число ч явл.наименьшим из таких чисел,т.е. явл точной верхн.гранью. Теорема док-на. Аналогична теорема о т.н.г Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |