|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Фазовая и групповая скоростиРассмотрим плоскую монохроматическую электромагнитную волну, которая распространяется в положительном направлении оси Ox в однородной среде
Преобразуем выражение (1.6.1) к виду
Уравнение поверхности равных фаз имеет вид
Дифференцирование по времени выражения (1.6.2) приводит к уравнению
В этом выражении величина
Если бы монохроматические волны реально существовали, можно было бы ограничиться только понятием фазовой скорости. Но на самом деле, как уже отмечалось в п. 1.5, излучение световых волн происходит порциями (цугами). Форма цуга определяется амплитудами
Поэтому волновой цуг еще называют волновым пакетом. Если скорости всех составляющих волнового пакета одинаковы, то их фазовые соотношения не меняются, и форма пакета остается постоянной. В этом случае его скорость совпадает со скоростью гармоник. В случае если скорости гармонических составляющих зависят от частоты, то фазовые соотношения между ними меняются по мере их распространения, что приводит к изменению формы пакета. Тогда скорость распространения пакета и фазовая скорость его гармоник не будут совпадать. В этом случае распространение пакета характеризуют так называемой групповой скоростью Vгр. Рассмотрим простейший случай волнового пакета, состоящего из двух гармонических составляющих одинаковой амплитуды, распространяющихся в одинаковом направлении и имеющих частоты w1 и w2, отличающиеся на малую величину Dw<<w1 и Dw<<w2
Результирующая волна имеет световой вектор вида
Исходя из принятых условий
Выражение (1.6.5) характеризует монохроматическую волну с частотой w1, волновым числом k 1 и медленно меняющейся амплитудой
Откуда
или в пределе при D k ®0
Используя выражение для фазовой скорости (1.6.3), нетрудно найти соотношение между групповой и фазовой скоростью волн. Действительно,
Так как
Выражение (1.6.8) называют формулой Рэлея. Оно показывает, что групповая скорость волн всегда меньше фазовой скорости. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.216 сек.) |