|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Обработка результатов прямого измеренияОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ (http://teachmen.ru/methods/phys_prac6.html) Обработка результатов прямого измерения Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины: x1, x2, x3,... xn. (2) Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим . Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Δx. В таком случае мы можем записать результат измерений в виде µ = ± Δx (3) Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом. Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде l = (8.34 ± 0.02) мм, (P = 0.95) Это означает, что из 100 шансов – 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм. Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P. Эта задача может быть решена с помощью теории вероятностей и математической статистики. В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой (4) где Δx – отклонение от величины истинного значения; σ – истинная среднеквадратичная ошибка; σ 2– дисперсия, величина которой характеризует разброс случайных величин. Как видно из (4) функция имеет максимальное значение при x = 0, кроме того, она является четной. На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Δx и двумя ординатами из точек Δx1 и Δx2 (заштрихованная площадь на рис.16) численно равна вероятности, с которой любой отсчет попадет в интервал (Δx1, Δx2). Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2) , (5) где – n число измерений. Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞. Средней квадратичной ошибкой отдельного результата измерения называется величина . (6) Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ σ = lim S. (7) С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений. Среднеквадратичной ошибкой среднего арифметического называется величина . (8) Это фундаментальный закон возрастания точности при росте числа измерений. Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде: , (9) Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз. В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него. Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом Стьюдента t. Опуская теоретические обоснования его введения, заметим, что Δx = · t. (10) где Δx – абсолютная ошибка для данной доверительной вероятности; Коэффициенты Стьюдента приведены в таблице 2. Из сказанного следует:
Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам. Таблица 2
Таблица 3
При обработке результатов прямых измерений предлагается следующий порядок операций:
= Σ x i / n.
.
(Δx 1)2, (Δx 2)2,..., (Δx n)2.
Δx = · t.
. Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.
.
. Рассмотрим на числовом примере применение приведенных выше формул.
Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна 0.005 мм). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности , а в четвертую – их квадраты (таблица 4). Таблица 4
Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для шести измерений найдем t = 2.57. Абсолютная ошибка найдется по формуле (10). Δd = 0.01238 · 2.57 = 0.04 мм. Сравним случайную и систематическую ошибки: , следовательно, δ = 0.005 мм можно отбросить. Окончательный результат запишем в виде d = (4.01 ± 0.04) мм при Р = 0.95.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |