АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем уравнений

Читайте также:
  1. E согласно механизму сотрудничества с системами фермента.
  2. ERP (Enterprise Resource Planning)- системы управления ресурсами предприятия.
  3. FIDELIO V8 - новое поколение систем управления для гостиниц
  4. II. Богословская система
  5. III. Лексика как система (8 часов)
  6. III. СИСТЕМЫ УБЕЖДЕНИЙ И ГЛУБИННЫЕ УБЕЖДЕНИЯ
  7. III. Требования к организации системы обращения с медицинскими отходами
  8. L.1.1. Однокомпонентные системы.
  9. L.1.2.Многокомпонентные системы (растворы).
  10. S: Минимальный налог при упрощенной системе налогообложения - это
  11. SCADA как система диспетчерского управления
  12. SCADA как часть системы автоматического управления

MathCAD дает возможность решать также и системы уравнений. Максимальное число уравнений и переменных равно 50. Результатом решения системы будет численное значение искомого корня.

Для решения системы уравнений необходимо выполнить следующее:

· Задать начальное приближение для всех неизвестных, входящих в систему уравнений. Mathcad решает систему с помощью итерационных методов.

· Напечатать ключевое слово Given. Оно указывает Mathcad, что далее следует система уравнений.

· Введите уравнения и неравенства в любом порядке. Используйте [Ctrl]= для печати символа =. Между левыми и правыми частями неравенств может стоять любой из символов <, >, ³ и £.

· Введите любое выражение, которое включает функцию Find, например: а:= Find (х, у).

Find (z 1, z 2 ,...)

Возвращает точное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое–либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Следующие выражения недопустимы внутри блока решения:

· Ограничения со знаком ¹.

· Дискретный аргумент или выражения, содержащие дискретный аргумент в любой форме.

· Неравенства вида a < b < c.

Блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find.

Функция, которая завершает блок решения уравнений, может быть использована аналогично любой другой функции. Можно произвести с ней следующие три действия:

· Можно вывести найденное решение, напечатав выражение вида:

Find (var 1, var 2,…) =.

· Определить переменную с помощью функции Find:

a:= Find (x) – скаляр,

var:= Find (var 1, var 2,…) – вектор.

Это удобно сделать, если требуется использовать решение системы уравнений в другом месте рабочего документа.

· Определить другую функцию с помощью Find

f (a, b, c, …):= Find (x, y, z, …).

Эта конструкция удобна для многократного решения системы уравнений для различных значений некоторых параметров a, b, c,…, непосредственно входящих в систему уравнений.

Рисунок 7. Решение систем уравнений в MathCAD

Сообщение об ошибке (Решение не найдено) при решении уравнений появляется, когда:

· Поставленная задача может не иметь решения.

· Для уравнения, которое не имеет вещественных решений, в качестве начального приближения взято вещественное число и наоборот.

· В процессе поиска решения последовательность приближений попала в точку локального минимума невязки. Для поиска искомого решения нужно задать различные начальные приближения.

· Возможно, поставленная задача не может быть решена с заданной точностью. Попробуйте увеличить значение TOL.

Пример 1 Рисунка 7 иллюстрирует решение системы уравнений в MathCAD.

Решение матричных [2] уравнений

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х 1, х 2, …, хn:

  (2)

В соответствии с правилом умножения матриц рассмотренная система линейных уравнений может быть записана в матричном виде

Ах = b, (3)

где:

.   (4)

Матрица А, столбцами которой являются коэффициенты при соответствующих неизвестных, а строками – коэффициенты при неизвестных в соответствующем уравнении, называется матрицей системы; матрица-столбец b, элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы. Матрица-столбец х, элементы которой - искомые неизвестные, называется решением системы.

Если матрица А - неособенная, то есть det A ¹ 0 то система (2), или эквивалентное ей матричное уравнение (3), имеет единственное решение.

В самом деле, при условии det A ¹ 0 существует обратная матрица А -1. Умножая обе части уравнения (3) на матрицу А -1 получим:

  (5)

Формула (5) дает решение уравнения (3) и оно единственно.

Системы линейных уравнений удобно решать с помощью функции lsolve.

lsolve(А, b)

Возвращается вектор решения x такой, что Ах = b.

Аргументы:

А - квадратная, не сингулярная матрица.

b - вектор, имеющий столько же рядов, сколько рядов в матрице А.

На Рисунке 8 показано решение системы трех линейных уравнений относительно трех неизвестных.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)