АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Первично активный транспорт

Читайте также:
  1. A. Выпячивание каудального отдела первичной кишки
  2. Активный противовирусный иммунитет
  3. Активный раздаточный материал
  4. АКТИВНЫЙ РАЗДАТОЧНЫЙ МАТЕРИАЛ
  5. Активный эксперимент
  6. АППАРАТУРА ПЕРВИЧНОЙ ОБРАБОТКИ ИНФОРМАЦИИ
  7. Банки как организаторы выпуска и первичного размещения ценных бумаг предприятий (андеррайтеры)
  8. Виды унифицированных форм первичной учетной документации по учету труда и заработной платы
  9. Вот это и есть главный закон природного развития эстетизма - чувство первично, и требует выражения, а на энергии этого чувства человек учиться техникам его передачи.
  10. Вторично активный транспорт
  11. Газообмен, транспорт.
  12. Глава 5. Природный радиоактивный фон. Что такое радон.

Первично активный транспорт - это перенос отдельных ионов во­преки концентрационному и электрическому градиентам с помощью специальных ионных насосов, а также с помощью эндоцитоза, экзоцитоза и трансцитоза. В обоих случаях энергия расхо­дуется непосредственно на перенос частиц.

Насосы (помпы) представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Не­посредственным источником энергии явля­ется АТФ. Достаточно хорошо изучены Na/К-, Са2+- и Н+-насосы. Есть основания предполагать наличие Сl- -насоса, о чем сви­детельствует участие ионов Сl- в процессах торможения ЦНС, а также в возникновении возбуждения в клетках проводящей системы сердца и в клетках рабочего миокарда. Отсут­ствие хлорной помпы привело бы к исчезно­вению концентрационного градиента ионов Сl- в перечисленных клетках и нарушению процессов возбуждения и торможения в них, чего в реальной действительности не наблю­дается. Насосы локализуются на клеточных мембранах или на мембранах клеточных органелл.

Основными характеристи­ками мембранных насосов являются:

- специфичность (селективность);

- постоянная работа;

Специфичность насосов (селективность) заключается в том, что они обычно переносят какой-то оп­ределенный ион или два иона. Например, Na/К-насос (объединенный насос для Nа+ и К+) не способен переносить ион лития, хотя по своим свойствам последний очень близок к натрию.

Натрий-калиевый насос (Nа/К-АТФаза ) — это интегральный белок клеточной мембра­ны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщепление АТФ и освобож­дение энергии, которую он же сам и исполь­зует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого — градиент концентрации Nа+ и К+ внутри и вне клетки, что обеспечивает формирование мембранно­го потенциала и вторичный транспорт ве­ществ. Главными активаторами насоса явля­ются гормоны (альдостерон, тироксин), не­достаток энергии (кислородное голодание) ингибирует насос. Его специфическими блокаторами являются строфантины, особенно уабаин. Работа натриевого насоса после уда­ления К+ из среды сильно нарушается.

Кальциевый насос (Са2+-АТФаза) локализу­ется в саркоплазматическом ретикулуме мы­шечной ткани, в эндоплазматическом рети­кулуме других клеток, клеточной мембране. Насос обеспечивает транспорт Сa2+ и строго контролирует содержание Са2+ в клетке, по­скольку изменение содержания Са2+ в ней нарушает функцию. Насос переносит Са2+ либо во внеклеточную среду, например, в клетках сердечной и скелетных мышц, либо в цистерны ретикулума и митохондрии (внут­риклеточное депо Са2+).

Протонный насос (Н+-АТФаза) имеется в мембране обкладочных клеток в желудке, где играет важную роль в выработке соляной кислоты; в почке он участвует в регуля­ции рН внутренней среды организма; этот насос постоянно работает во всех митохонд­риях.

Постоянная работа насосов необходима для поддержания концентрационных гради­ентов ионов, связанного с ними электричес­кого заряда клетки и движения воды и неза­ряженных частиц в клетку и из клетки вто­рично активно, в частности согласно законам диффузии и осмоса. Совокупность этих про­цессов обеспечивает жизнедеятельность клетки. В результате разной проницаемости. клеточной мембраны для разных ионов и по­стоянной работы ионных помп концентра­ция различных ионов внутри и снаружи клет­ки неодинакова. Поскольку ионы являются заряженными частицами, то существует электрический заряд клетки. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преоблада­ют отрицательные ионы, а снаружи — поло­жительные.

Преобладающими ионами в организме человека являются Na+, К+, Сl-, причем К+ находится преимущественно в клетке, а Na+ и Сl- — во внеклеточной жидкости. Внутри клетки находятся также крупномолекуляр­ные (в основном белкового происхождения) анионы. Роль первичного транспорта в поддержании различной концентрации разных ионов легко доказать, например, в опыте с эритроцитами. Если с помощью цианида подавить дыхание эритроцитов, то их ион­ный состав начинает постепенно меняться: Nа+ и Сl- диффундируют через клеточную мембрану в эритроцит, К+ — из эритроцита. Но в норме за счет энергии, поставляемой процессом дыхания, идет их первичный транспорт в обратном направлении, благо­даря чему и поддерживаются концентраци­онные градиенты.

Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только Na+ и К+, т.е. на работу Na+/К.+-насоса. Это обеспечивает сохранение клеточного объема (осморегуляция), поддер­жание электрической активности в нервных и мышечных клетках, транспорт других ве­ществ в различных клетках организма.

Механизм работы ионных насосов.++-насос — молекула интегрального белка, пронизывающая всю толщу клеточной мембраны. Молекула имеет участок, который связывает либо Na+, либо К+, — это активный участок. При конформации Е1 белковая молекула активной своей частью обращена внутрь клетки и об­ладает сродством к Nа+, который присоеди­няется к белку, в результате чего активирует­ся АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. Последняя обеспечи­вает конформацию молекулы белка: она пре­вращается в форму Е2, в результате чего ак­тивный ее участок уже обращен наружу кле­точной мембраны. Теперь белок теряет сродство к Na+, последний отщепляется от него, а белок-помпа приобретает сродство к иону К+ и соединяется с ним. Это ведет снова к изме­нению конформации переносчика: форма Е2 переходит в форму Е1, когда активный учас­ток белка снова обращен внутрь клетки. При этом он теряет сродство к иону К+, и тот от­щепляется, а белок приобретает снова срод­ство к иону Na+ — это один цикл работы помпы. Затем цикл повторяется. Насос явля­ется электрогенным, поскольку за один цикл выводится из клетки 3 иона Nа+, а возвраща­ется в клетку 2 иона К+. На один цикл рабо­ты Na/К-насоса расходуется одна молекула АТФ, причем энергия расходуется только на перенос Na+.

Подобным образом работают и Са-АТФазы сарко- и эндоплазматической сетей, а также клеточной мембраны, с тем лишь раз­личием, что переносятся только ионы Ca2+ и в одном направлении — из гиалоплазмы в сарко- или эндоплазматический ретикулум, а также — наружу клетки. Кальциевый насос (Са-АТФаза) — молекула интегрального белка, также имеет активный участок, связы­вающий два иона Са2+, и может быть в двух конформациях — Е1 и Е2. В конформации Е1 активный участок молекулы белка обращен в гиалоплазму, обладает сродством к Са2+ и со­единяется с ним. В результате насос перехо­дит в конформацию Е1, когда активный учас­ток молекулы белка обращен внутрь сарко-плазматического ретикулума или наружу клетки. При этом уменьшается сродство белка к Са2+, последний отщепляется от него. В присутствии иона магния освобождается энергия АТФ, за счет которой молекула белка Са-АТФазы вновь переходит в конфор­мацию Е1; цикл повторяется. Одна молекула АТФ переносит два иона Са2+.

Эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт) — это еще три вида первично-активного транспорта, близких по механизму друг к другу, посредст­вом которых различные материалы перено­сятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз), либо через клетку (трансцитоз). С помощью этих меха­низмов транспортируются крупномолекуляр­ные вещества (белки, полисахариды, нуклеи­новые кислоты), которые не могут транспор­тироваться по каналам или с помощью насо­сов.

При эндоцитозе клеточная мембрана об­разует впячивания или выросты внутрь клет­ки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно слива­ются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу — внутриклеточному перевариванию. Продукты гидролиза исполь­зуются клеткой. Различают два типа эндоцитоза — фагоцитоз (поглощение твердых час­тиц) и пиноцитоз — поглощение жидкого ма­териала (раствор, коллоидный раствор, в том числе и белков, суспензия). Пиноцитоз ха­рактерен для амебоидных простейших и для многих других клеток, таких как лейкоциты, клетки зародыша, клетки печени и некото­рые клетки почек, участвующие в водно-со­левом обмене, в обмене белков: они обеспе­чивают пиноцитоз белков из первичной мочи в клетки проксимальных канальцев и их лизис. С помощью пиноцитоза новорожден­ные получают с молоком матери иммуногло­булины, которые через энтероциты попадают в кровь ребенка и выполняют свои защитные функции. Процесс эндоцитоза имеет место при всасывании веществ в желудочно-ки­шечном тракте.

Экзоцитоз — процесс, обратный эндоцитозу; это наиболее распространенный ме­ханизм секреции. Таким способом различные материалы выводятся из клеток: из пресинаптических окончаний — медиатор, из пи­щеварительных вакуолей удаляются остав­шиеся непереваренными частицы, а из сек­реторных клеток путем экзоцитоза выводится их жидкий секрет (слизь, гормоны, фермен­ты), из гепатоцитов — альбумины.

Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, обра­зовавшиеся в рибосомах эндоплазматического ре­тикулума. Низкомолекулярные вещества (медиа­торы, некоторые гормоны) попадают в везикулы преимущественно с помощью вторичного транс­порта. Пузырьки транспортируются сократитель­ным аппаратом клетки, состоящим из нитей акти­на, миозина и микротрубочек, к клеточной мем­бране, сливаются с ней, и содержимое клеток вы­деляется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного ап­парата клетки. Процесс слияния везикул с клеточ­ной мембраной активируется фосфолипидом лизолецитином и внутриклеточным Са2+. Например, поступление Са2+ в нервное окончание обеспечи­вает выделение медиатора через пресинаптическую мембрану в синаптическую щель. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругообо­рот, рециркуляция): в течение каждого часа в про­цессе эндоцитоза в разных клетках используется от 3 до 100 % клеточной оболочки, но с такой же скоростью происходит ее восстановление в ре­зультате экзоцитоза.

Трансцитоз сочетает в себе элементы эндо- и экзоцитоза: это перенос частиц через клетку, например, молекул белка в виде вези­кул — через эндотелиальную клетку капилля­ров на другую ее сторону. В этом случае эндоцитозные пузырьки не взаимодействуют с лизосомами. При этом пузырьки могут сли­ваться друг с другом, образуя каналы, пересе­кающие всю клетку.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)