АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вторично активный транспорт

Читайте также:
  1. G. Послуги з транспортування трубопроводами
  2. II. Контроль за конструкцией транспортных средств при их производстве и сертификации
  3. IV. Контроль за конструкцией и техническим состоянием транспортных средств, находящихся в эксплуатации
  4. TEMA 10 АВТОТРАНСПОРТНЕ СТРАХУВАННЯ
  5. V. Вимоги до транспортування вакцин, анатоксинів та алергену туберкульозного
  6. А. Наследственный дефицит ферментных систем, участвующих в активном транспорте определенных аминокислот.
  7. А.10 Спеціальні машини і устаткування для транспортного будівництва
  8. А.2 Підйомно-транспортні машини
  9. Аварії на транспорті
  10. Автомобiльний транспорт – як джерело забруднення довкiлля
  11. Автомобильный транспорт
  12. Автомобильный транспорт

Вторичный транспорт — переход различных частиц и молекул воды за счет ранее запасен­ной (потенциальной) энергии. Потенциаль­ная энергия создается в виде электрического, концентрационного и гидростатического гра­диентов (это обеспечивает диффузию, осмос, следование за растворителем) и градиента гидростатического давления жидкости, обес­печивающего фильтрацию, что создается дея­тельностью сердца, скелетных и гладких мышц. К вторичному транспорту относятся следующие виды транспорта.

Диффузия. Согласно законам диффу­зии, частицы перемещаются из области с вы­сокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными зарядами — притягиваются друг к другу. Направление диффузии опреде­ляется взаимодействием электрического и концентрационного (химического) градиен­тов. Если частицы не заряжены, то направле­ние их диффузии определяется только гради­ентом концентрации. Скорость диффузии определяется проницаемостью мембраны, а также градиентом концентрации для незаря­женных частиц; электрическим и концентра­ционным градиентами — для заряженных частиц. Направления действия электрическо­го и концентрационного градиентов могут не совпадать. Например, Na+ в процессе воз­никновения возбуждения продолжает посту­пать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечи­вается концентрационным градиентом во­преки электрическому градиенту. Совокуп­ность химического (концентрационного) и электрического градиентов называют элект­рохимическим градиентом. Различают прос­тую и облегченную диффузию и осмос как частный случай диффузии.

Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. При этом заряженные частицы движутся согласно электрохимичес­кому градиенту, а незаряженные — согласно только химическому градиенту. Через липид­ный бислой проходят жирорастворимые час­тицы. Если они находятся в воде по одну сто­рону мембраны, то могут внедряться в липидную оболочку благодаря тепловому дви­жению (при этом необходимо освободиться от гидратной оболочки). Частицы-неэлектро­литы обычно легко освобождаются от гидрат­ной оболочки (разрыв водородных связей). Естественно, с уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. Примером простой диффузии через липидный слой может слу­жить диффузия малых незаряженных поляр­ных молекул этанола, кислорода, углекисло­го газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарств. Этот процесс происходит слишком медленно и плохо контролируется. В ходе эволюции сформировались специальные каналы, по ко­торым могут проходить различные частицы, причем ионы — очень быстро — за 0,5—1 мс. Каналы заполнены водой и, кроме ионов, через них могут проходить малые молекулы неэлектролитов (этанол, мочевина), заряжен­ные молекулы. Диаметр этих каналов 0,3— 0,8 нм. Скорость диффузии определяется электрохимическим градиентом и проницае­мостью клеточной мембраны для данного ве­щества. С течением времени скорость про­стой диффузии изменяется мало, пока суще­ствует движущая сила (электрический или концентрационный градиенты), так как по одному и тому же каналу или через липид­ный бислой после прохождения одной части­цы сразу же может следовать другая.

Облегченная диффузия осуществляется также согласно концентрационному градиен­ту и обеспечивает перенос веществ, способ­ных образовывать комплексы с другими мо­лекулами-переносчиками. Переносчик — специфический мембранный белок должен свободно переходить с одной стороны мем­браны на другую. Этот транспорт осущест­вляется очень быстро. С помощью простой диффузии не могут проходить через мембра­ну даже небольшие полярные молекулы — моносахариды, аминокислоты. Облегченная диффузия имеет ряд особенностей по сравне­нию с простой диффузией. 1. Имеются спе­цифические переносчики для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за пере­носчик. 2. У молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа. 3. С уве­личением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенно­го предела в отличие от простой диффузии. Прекращение нарастания облегченной диф­фузии при увеличении концентрации веще­ства свидетельствует о том, что все перенос­чики уже заняты — явление насыщения. Пере­носчиками являются белковые молекулы мембран, которые совершают челночные движения с одной стороны мембраны на дру­гую и обратно либо встраиваются в мембра­ну. В последнем случае образуется канал, по которому проходят транспортируемые веще­ства, в основном сахара, аминокислоты. Од­нако неясно, каким образом транспортиру­ются сами переносчики.

В случае предполагаемых челночных движений белковых молекул-переносчиков возникает во­прос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движе­ние, то оно быстро прекратится после уравнива­ния концентрации самих переносчиков по обе стороны клеточной мембраны. На этот вопрос от­вета пока нет. Возможны два механизма. Во-пер­вых, за счет создания градиента концентрации самого переносчика, с помощью концентрацион­ного градиента транспортируемого вещества. Если, например, концентрация глюкозы больше вне клетки, нежели в клетке, то она может пере­ходить в клетку согласно своему градиенту кон­центрации. Образование комплекса молекул глю­коза — переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентраци­онному градиенту глюкозы. Движущей силой яв­ляется концентрационный градиент глюкозы. На внутренней стороне мембраны клетки комплекс распадается, поэтому концентрация молекул-переносчиков возрастает и они, согласно своему концентрационному градиенту, переходят на внешнюю сторону клеточной мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Такой транспорт возможен только при на­личии концентрационного градиента транспорти­руемого вещества, например при более высокой концентрации глюкозы и аминокислот в кишеч­нике вследствие приема пищи и гидролиза пище­вых веществ. Далее глюкоза и аминокислоты могут переходить из клетки в кровь согласно их концентрационным градиентам — если в энтероцитах их концентрация больше, чем в плазме крови. Из плазмы крови аминокислоты и глюкоза поступают в клетки различных органов и тканей организма согласно концентрационным их гради­ентам, так как клетка расходует эти вещества. По всей этой цепочке: полость кишки — энтероциты — кровь — интерстиций — клетки организма транспорт глюкозы и аминокислот осуществляет­ся без затрат энергии — это исключение из обще­го правила. В кишечнике же глюкоза и аминокис­лоты накапливаются вследствие пищеварения, на что также затрачивается энергия — механическая обработка пищи, продвижение ее химуса по желу­дочно-кишечному тракту, выработка пищевари­тельных соков. Во-вторых, челночные движения переносчика могут осуществляться или допол­няться с помощью ионов К+ Известно, что К+ постоянно диффундирует из клетки согласно кон­центрационному градиенту. При этом на внутрен­ней стороне мембраны клетки может образоваться комплекс ион К+ — молекула переносчика, кото­рый и перейдет на внешнюю сторону клеточной мембраны. В этом случае движущей силой являет­ся концентрационный градиент К+, который затем переносится в клетку Na/К-помпой с непо­средственной затратой энергии, т.е. первично ак­тивно. Напомним, что энергия здесь затрачивает­ся только на транспорт Nа+ — транспорт веществ экономичен. Переносчик же транспортируется вторично активно: если не будет работать Na/K-помпа, челночные движения переносчика, соглас­но такому представлению, прекратятся, при этом сохраняется простая диффузия в случае наличия градиента концентрации вещества.

Осмос — это частный случай диффузии: движение воды (растворителя) через полу­проницаемую мембрану в область с большей концентрацией частиц, т.е. с большим ос­мотическим давлением. Осмотическое давле­ние — это диффузионное давление, обеспе­чивающее движение растворителя через полупроницаемую мембрану. Измеряется оно минимальным механическим давлением на раствор (например, с помощью поршня), препятствующим движению растворителя через полупроницаемую мембрану. Осмоти­ческое давление одномолярного раствора чрезвычайно велико: 22,4 атм, в плазме крови оно существенно ниже — 7,6 атм, не­сколько больше оно внутри клетки, что обес­печивает ее упругость вследствие поступле­ния воды в клетку и растяжения ее мембра­ны. Вода поступает в клетку через водные ка­налы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы (аквапорионы) могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Фильтрация — переход раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью серд­ца (фильтрация в артериальном конце капил­ляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкой мускулатурой желудочно-ки­шечного тракта и мышечного пресса, обеспе­чивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь.

В процессе фильтрации поток воды через мембрану увлекает за собой растворен­ные вещества, свободно проходящие через полупроницаемую мембрану, при этом час­тицы переходят через мембрану в неизменен­ной концентрации. Это наблюдается, напри­мер, в артериальном конце капилляров всех органов и тканей организма, в собиратель­ных трубках почки при переходе воды в моз­говой слой почки. Растворенные частицы, например мочевина, переходят с жидкостью в интерстиций почки, аминокислоты и глю­коза — в интерстиций всех органов и тканей организма.

Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Имеется два варианта дан­ного механизма транспорта.

Первый вариант, когда направление дви­жения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт), например перенос глюкозы в прокси­мальных канальцах нефрона в клетку каналь­ца из первичной мочи. Глюкоза соединяется с белком-переносчиком, последний соединя­ется с Nа+, а Nа+, согласно концентрацион­ному и электрическому градиентам, диффун­дирует в клетку канальца и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, Na+ выво­дится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту — первично активно. Глюкоза обратно пройти не может и по механизму простой или облегченной диф­фузии (с переносчиком) выходит из клетки уже с другой стороны — в интерстиций, а затем в кровь согласно концентрационному градиенту. С помощью натрийзависимого транспорта всасываются аминокислоты и моносахара в кишечнике, если всасывание идет вопреки концентрационному градиенту; про­исходит обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью Nа+ осуществляется согласно зако­нам диффузии для Na+. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент Nа+. Глюкоза вместе с Nа+ идет в клетку даже в том случае, если ее концентрация в клетке больше, неже­ли в среде, если, конечно, электрохимичес­кий градиент Nа+ превосходит концентраци­онный градиент глюкозы.

Второй вариант натрийзависимого транс­порта, когда перемещение транспортируемых частиц направлено в противоположную по от­ношению к движению Nа+ сторону, — это антипорт (противотранспорт). Этим обмен­ным механизмом регулируется, например, со­держание Са2+ в клетке, рН внутри клетки за счет выведения Н+-иона в обмен на внекле­точный Nа+. В большинстве клеток (а воз­можно, и во всех) внутриклеточная концент­рация Са2+ на несколько порядков ниже вне­клеточной. Концентрационный градиент Nа+ участвует в выведении Са2+ из клетки (в соот­ношении ЗNа+: 1Са2+). В некоторых клетках (кардиомиоциты, гладкомышечные клетки) он играет главную роль. Об этом свидетельст­вует, в частности, следующий факт. Выведе­ние Са2+ из клеток снижается, если удалить из внеклеточной среды Nа+. Это позволяет пред­положить, что Са2+ выводится из клетки в обмен на поступающий в нее Nа+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается он переносчиком-обменником. Исходным ис­точником энергии этого процесса опять явля­ется градиент Nа+, который в конечном счете формируется за счет АТФ-зависимого актив­ного транспорта Nа+. Поэтому при ингибировании Nа/К-АТФазы сердечными гликозидами, при уменьшении внеклеточной концент­рации Nа+ и в бескалиевой среде.(когда Nа+ выводится из клетки недостаточно) Nа/Са-обменник блокируется, в результате чего уве­личивается внутриклеточная концентрация Са2+, что ведет к увеличению силы сокраще­ния сердца. Это свойство сердечных гликозидов используется в клинической практике.

Вторичный транспорт веществ играет важ­ную роль в деятельности почки, например работа Nа/Н-обменника в канальцах почек. В этом случае выведение Н+ из клеток, вы­стилающих почечный каналец, в просвет ка­нальца сопряжено с поглощением клетками Nа+ в отношении 1:1, что весьма важно: не приходится затрачивать энергию на выполне­ние электрической работы в процессе регуля­ции рН среды, поскольку происходит обмен двух одинаковых положительных зарядов.

Конкретный механизм работы переносчика-обменника неясен. Переносчик может транспортировать Са2+ и Н+ вопреки их электрическим и концентраци­онным градиентам только в том случае, если сам пере­носчик имеет собственный градиент, — его концентра­ция в клетке больше, чем вне клетки, причем этот гра­диент должен постоянно поддерживаться, иначе перенос Са2+ и Н+ прекратится. Полагаем, что выведение Са2+ и Н+ из клетки в результате диффузии Nа+ в клетку (противотранспорт) осуществляется следую­щим образом. На постоянно поступает в клетку, со­гласно своему электрохимическому градиенту, и транспортирует с собой (в комплексе) молекулы-пере­носчики с внешней стороны клеточной мембраны на внутреннюю, что и ведет к созданию их концентраци­онных градиентов, направленных из клетки. Са2+ и Н+ соединяются со своими переносчиками на внутренней стороне клеточной мембраны и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Nа/К насоса ведет к накоплению Са2+ в кардиомиоцитах (транспорт Са2+ из клетки уменьшается). Это примеры вторичного транспорта вещества за счет пер­вичного транспорта Nа+, который с помощью помпы выводится из клетки. Переносчики совершают челноч­ные движения за счет работы Nа/К-насоса — вторич­но активно и транспортируют с собой Са2+ и Н+.

Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Что касается вторичного транспорта ионов, то он осуществляется, как правило, с помо­щью простой диффузии через специальные ионные каналы.

Ионные каналы

Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управ­ляемого ионного канала обычно длится око­ло 1 мс, иногда до 3 мс и значительно боль­ше, при этом через один канал может пройти 12—20 млн ионов.

Классификация ионных каналов прово­дится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляе­мые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Напри­мер, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с бы­стрыми каналами для Nа+ и К+ важную роль играют медленные каналы — кальциевые, ка­лиевые и натриевые.

В зависимости от стимула, активирую­щего или инактивирующего, управляемые ионные каналы различают несколько их видов: а) потенциалчувствительные, б) хемочувствительные,в) механочувствительные, г) кальцийчувствительные, д) каналы, чувст­вительные ко вторым посредникам. Послед­ние расположены во внутриклеточных мем­бранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить от­крытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д — это биологи­чески активное вещество или фармакологи­ческий препарат, активирующий или блокирующий рецептор. Открытие хемочувстви­тельных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых ка­налов открываются и закрываются при изме­нении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие элект­рический заряд. Механочувствительные ка­налы активируются и инактивируются сдав­ливанием и растяжением. Кальцийчувстви­тельные каналы активируются, как видно из названия, кальцием, причем Са2+ может ак­тивировать как собственные каналы, напри­мер Са-каналы саркоплазматического ретикулума, так и каналы других ионов, напри­мер каналы ионов К+. Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные ка­налы. Следует заметить, что кальций-чувствительные каналы — это один из примеров хемо­чувствительных каналов.

В зависимости от селективности разли­чают ионоселективные каналы, пропускаю­щие только один ион, и каналы, не обладаю­щие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть кана­лы, пропускающие несколько ионов, напри­мер Nа+, К+ и Са2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нерв­но-мышечном синапсе активируются ионные каналы, через которые проходят одновремен­но ионы Nа+, К+ и Са2+. Механочувствитель­ные каналы являются вообще неселективны­ми для одновалентных ионов и Са2+.

Один и тот же ион может иметь не­сколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К+:

а) неуправляемые каналы покоя (каналы утечки) через которые К+ постоянно выходит из клетки, что является глав­ным фактором в формировании мем­бранного потенциала(потенциала покоя);

б) потенциалчувствительные управляемые К-каналы;

в) К-каналы, активируемые Са2+;

г) каналы, активируемые и другими иона­ми и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа+ — управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

а) потенциалчувствительные быстрые Na-каналы — быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа+ в клетку во вре­мя ее возбуждения;

б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мы­шечном синапсе, глутаматом — в си­напсах нейронов ЦНС;

в) медленные неуправляемые Nа-каналы—каналы утечки, через которые Nа+ постоянно диффундирует в клетку и пере носит с собой другие молекулы, напри­мер глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа+ в фор­мировании мембранного потенциала.

Каналы для Са2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и бы­стрые:

а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембра­ны, обусловливают медленный вход Са2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;

б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са2+ в гиалоплазму и электромеханическое со­пряжение.

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в неболь­шом количестве в нейронах и сконцентри­рованы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, ре­цепторуправляемые в синапсах ЦНС и ак­тивируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функци­онирование. Каналы имеют устье и селектив­ный фильтр, а управляемые каналы — и во­ротный механизм; каналы заполнены жид­костью, их размеры 0,3—0,8 нм. Селектив­ность ионных каналов определяется их раз­мером и наличием в канале заряженных час­тиц. Эти частицы имеют заряд, противопо­ложный заряду иона, который они притяги­вают, что обеспечивает проход иона через данный канал (одноименные заряды, как из­вестно, отталкиваются). Через ионные кана­лы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны из­бавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диа­метр иона Nа+, например, с гидратной обо­лочкой равен 0,3 нм, а без гидратной оболоч­ки — 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеива­ния» не в состоянии объяснить, например, почему К+ не проходит через открытые Nа-каналы в начале цикла возбуждения клет­ки, но тем не менее она дает удовлетвори­тельное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (се­лективной) проницаемости клеточных мем­бран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых ка­налов способствует активации рядом распо­ложенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Час­тичная деполяризация клеточной мембраны за счет активации механочувствительных ка­налов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+.

Ионные каналы блокируются специфи­ческими веществами и фармакологическими препаратами, что широко используется с ле­чебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхо­лином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые — двухвалентными ионами, на­пример ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успеш­ное изучение ионных каналов дает возмож­ность глубже понять механизм действия фар­макологических препаратов, а значит, более успешно применять их в клинической прак­тике. Новокаин, например, как местный анестетик снимает болевые ощущения пото­му, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волок­нам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организ­ме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществля­ется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает пере­ход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и рас­пространение возбуждения.

Процесс перехода воды из одной облас­ти в другую, согласно закону осмоса, обеспе­чивает транспорт всех частиц, растворенных в ней и способных пройти через биологичес­кие фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на пере­нос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транс­порт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает переме­щение мембранных переносчиков, соединен­ных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-перенос­чиков, которые в свою очередь транспорти­руют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрацион­ному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энер­гии.

Диффузия газов в легких между возду­хом и кровью, а также в тканях между кро­вью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организ­ма и легких. Диффузия веществ из кишечни­ка, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту кон­центрации, на создание которого клетки ор­ганизма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц — в кишечнике) являются исключе­нием, когда транспорт в организме осущест­вляется вообще без затраты энергии. Однако энергия расходуется на доставку этих ве­ществ в организм — дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на дви­жение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирова­ние мембранных потенциалов клеток мы­шечной и нервной тканей, одной из функций последней является регуляция различных систем организма.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)