|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вторично активный транспортВторичный транспорт — переход различных частиц и молекул воды за счет ранее запасенной (потенциальной) энергии. Потенциальная энергия создается в виде электрического, концентрационного и гидростатического градиентов (это обеспечивает диффузию, осмос, следование за растворителем) и градиента гидростатического давления жидкости, обеспечивающего фильтрацию, что создается деятельностью сердца, скелетных и гладких мышц. К вторичному транспорту относятся следующие виды транспорта. Диффузия. Согласно законам диффузии, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными зарядами — притягиваются друг к другу. Направление диффузии определяется взаимодействием электрического и концентрационного (химического) градиентов. Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Скорость диффузии определяется проницаемостью мембраны, а также градиентом концентрации для незаряженных частиц; электрическим и концентрационным градиентами — для заряженных частиц. Направления действия электрического и концентрационного градиентов могут не совпадать. Например, Na+ в процессе возникновения возбуждения продолжает поступать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечивается концентрационным градиентом вопреки электрическому градиенту. Совокупность химического (концентрационного) и электрического градиентов называют электрохимическим градиентом. Различают простую и облегченную диффузию и осмос как частный случай диффузии. Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. При этом заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — согласно только химическому градиенту. Через липидный бислой проходят жирорастворимые частицы. Если они находятся в воде по одну сторону мембраны, то могут внедряться в липидную оболочку благодаря тепловому движению (при этом необходимо освободиться от гидратной оболочки). Частицы-неэлектролиты обычно легко освобождаются от гидратной оболочки (разрыв водородных связей). Естественно, с уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. Примером простой диффузии через липидный слой может служить диффузия малых незаряженных полярных молекул этанола, кислорода, углекислого газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарств. Этот процесс происходит слишком медленно и плохо контролируется. В ходе эволюции сформировались специальные каналы, по которым могут проходить различные частицы, причем ионы — очень быстро — за 0,5—1 мс. Каналы заполнены водой и, кроме ионов, через них могут проходить малые молекулы неэлектролитов (этанол, мочевина), заряженные молекулы. Диаметр этих каналов 0,3— 0,8 нм. Скорость диффузии определяется электрохимическим градиентом и проницаемостью клеточной мембраны для данного вещества. С течением времени скорость простой диффузии изменяется мало, пока существует движущая сила (электрический или концентрационный градиенты), так как по одному и тому же каналу или через липидный бислой после прохождения одной частицы сразу же может следовать другая. Облегченная диффузия осуществляется также согласно концентрационному градиенту и обеспечивает перенос веществ, способных образовывать комплексы с другими молекулами-переносчиками. Переносчик — специфический мембранный белок должен свободно переходить с одной стороны мембраны на другую. Этот транспорт осуществляется очень быстро. С помощью простой диффузии не могут проходить через мембрану даже небольшие полярные молекулы — моносахариды, аминокислоты. Облегченная диффузия имеет ряд особенностей по сравнению с простой диффузией. 1. Имеются специфические переносчики для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за переносчик. 2. У молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа. 3. С увеличением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии. Прекращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все переносчики уже заняты — явление насыщения. Переносчиками являются белковые молекулы мембран, которые совершают челночные движения с одной стороны мембраны на другую и обратно либо встраиваются в мембрану. В последнем случае образуется канал, по которому проходят транспортируемые вещества, в основном сахара, аминокислоты. Однако неясно, каким образом транспортируются сами переносчики. В случае предполагаемых челночных движений белковых молекул-переносчиков возникает вопрос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движение, то оно быстро прекратится после уравнивания концентрации самих переносчиков по обе стороны клеточной мембраны. На этот вопрос ответа пока нет. Возможны два механизма. Во-первых, за счет создания градиента концентрации самого переносчика, с помощью концентрационного градиента транспортируемого вещества. Если, например, концентрация глюкозы больше вне клетки, нежели в клетке, то она может переходить в клетку согласно своему градиенту концентрации. Образование комплекса молекул глюкоза — переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентрационному градиенту глюкозы. Движущей силой является концентрационный градиент глюкозы. На внутренней стороне мембраны клетки комплекс распадается, поэтому концентрация молекул-переносчиков возрастает и они, согласно своему концентрационному градиенту, переходят на внешнюю сторону клеточной мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Такой транспорт возможен только при наличии концентрационного градиента транспортируемого вещества, например при более высокой концентрации глюкозы и аминокислот в кишечнике вследствие приема пищи и гидролиза пищевых веществ. Далее глюкоза и аминокислоты могут переходить из клетки в кровь согласно их концентрационным градиентам — если в энтероцитах их концентрация больше, чем в плазме крови. Из плазмы крови аминокислоты и глюкоза поступают в клетки различных органов и тканей организма согласно концентрационным их градиентам, так как клетка расходует эти вещества. По всей этой цепочке: полость кишки — энтероциты — кровь — интерстиций — клетки организма транспорт глюкозы и аминокислот осуществляется без затрат энергии — это исключение из общего правила. В кишечнике же глюкоза и аминокислоты накапливаются вследствие пищеварения, на что также затрачивается энергия — механическая обработка пищи, продвижение ее химуса по желудочно-кишечному тракту, выработка пищеварительных соков. Во-вторых, челночные движения переносчика могут осуществляться или дополняться с помощью ионов К+ Известно, что К+ постоянно диффундирует из клетки согласно концентрационному градиенту. При этом на внутренней стороне мембраны клетки может образоваться комплекс ион К+ — молекула переносчика, который и перейдет на внешнюю сторону клеточной мембраны. В этом случае движущей силой является концентрационный градиент К+, который затем переносится в клетку Na/К-помпой с непосредственной затратой энергии, т.е. первично активно. Напомним, что энергия здесь затрачивается только на транспорт Nа+ — транспорт веществ экономичен. Переносчик же транспортируется вторично активно: если не будет работать Na/K-помпа, челночные движения переносчика, согласно такому представлению, прекратятся, при этом сохраняется простая диффузия в случае наличия градиента концентрации вещества. Осмос — это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление — это диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Измеряется оно минимальным механическим давлением на раствор (например, с помощью поршня), препятствующим движению растворителя через полупроницаемую мембрану. Осмотическое давление одномолярного раствора чрезвычайно велико: 22,4 атм, в плазме крови оно существенно ниже — 7,6 атм, несколько больше оно внутри клетки, что обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы (аквапорионы) могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина. Фильтрация — переход раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью сердца (фильтрация в артериальном конце капилляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкой мускулатурой желудочно-кишечного тракта и мышечного пресса, обеспечивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь. В процессе фильтрации поток воды через мембрану увлекает за собой растворенные вещества, свободно проходящие через полупроницаемую мембрану, при этом частицы переходят через мембрану в неизмененной концентрации. Это наблюдается, например, в артериальном конце капилляров всех органов и тканей организма, в собирательных трубках почки при переходе воды в мозговой слой почки. Растворенные частицы, например мочевина, переходят с жидкостью в интерстиций почки, аминокислоты и глюкоза — в интерстиций всех органов и тканей организма. Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Имеется два варианта данного механизма транспорта. Первый вариант, когда направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт), например перенос глюкозы в проксимальных канальцах нефрона в клетку канальца из первичной мочи. Глюкоза соединяется с белком-переносчиком, последний соединяется с Nа+, а Nа+, согласно концентрационному и электрическому градиентам, диффундирует в клетку канальца и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту — первично активно. Глюкоза обратно пройти не может и по механизму простой или облегченной диффузии (с переносчиком) выходит из клетки уже с другой стороны — в интерстиций, а затем в кровь согласно концентрационному градиенту. С помощью натрийзависимого транспорта всасываются аминокислоты и моносахара в кишечнике, если всасывание идет вопреки концентрационному градиенту; происходит обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью Nа+ осуществляется согласно законам диффузии для Na+. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент Nа+. Глюкоза вместе с Nа+ идет в клетку даже в том случае, если ее концентрация в клетке больше, нежели в среде, если, конечно, электрохимический градиент Nа+ превосходит концентрационный градиент глюкозы. Второй вариант натрийзависимого транспорта, когда перемещение транспортируемых частиц направлено в противоположную по отношению к движению Nа+ сторону, — это антипорт (противотранспорт). Этим обменным механизмом регулируется, например, содержание Са2+ в клетке, рН внутри клетки за счет выведения Н+-иона в обмен на внеклеточный Nа+. В большинстве клеток (а возможно, и во всех) внутриклеточная концентрация Са2+ на несколько порядков ниже внеклеточной. Концентрационный градиент Nа+ участвует в выведении Са2+ из клетки (в соотношении ЗNа+: 1Са2+). В некоторых клетках (кардиомиоциты, гладкомышечные клетки) он играет главную роль. Об этом свидетельствует, в частности, следующий факт. Выведение Са2+ из клеток снижается, если удалить из внеклеточной среды Nа+. Это позволяет предположить, что Са2+ выводится из клетки в обмен на поступающий в нее Nа+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается он переносчиком-обменником. Исходным источником энергии этого процесса опять является градиент Nа+, который в конечном счете формируется за счет АТФ-зависимого активного транспорта Nа+. Поэтому при ингибировании Nа/К-АТФазы сердечными гликозидами, при уменьшении внеклеточной концентрации Nа+ и в бескалиевой среде.(когда Nа+ выводится из клетки недостаточно) Nа/Са-обменник блокируется, в результате чего увеличивается внутриклеточная концентрация Са2+, что ведет к увеличению силы сокращения сердца. Это свойство сердечных гликозидов используется в клинической практике. Вторичный транспорт веществ играет важную роль в деятельности почки, например работа Nа/Н-обменника в канальцах почек. В этом случае выведение Н+ из клеток, выстилающих почечный каналец, в просвет канальца сопряжено с поглощением клетками Nа+ в отношении 1:1, что весьма важно: не приходится затрачивать энергию на выполнение электрической работы в процессе регуляции рН среды, поскольку происходит обмен двух одинаковых положительных зарядов. Конкретный механизм работы переносчика-обменника неясен. Переносчик может транспортировать Са2+ и Н+ вопреки их электрическим и концентрационным градиентам только в том случае, если сам переносчик имеет собственный градиент, — его концентрация в клетке больше, чем вне клетки, причем этот градиент должен постоянно поддерживаться, иначе перенос Са2+ и Н+ прекратится. Полагаем, что выведение Са2+ и Н+ из клетки в результате диффузии Nа+ в клетку (противотранспорт) осуществляется следующим образом. На постоянно поступает в клетку, согласно своему электрохимическому градиенту, и транспортирует с собой (в комплексе) молекулы-переносчики с внешней стороны клеточной мембраны на внутреннюю, что и ведет к созданию их концентрационных градиентов, направленных из клетки. Са2+ и Н+ соединяются со своими переносчиками на внутренней стороне клеточной мембраны и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Nа/К насоса ведет к накоплению Са2+ в кардиомиоцитах (транспорт Са2+ из клетки уменьшается). Это примеры вторичного транспорта вещества за счет первичного транспорта Nа+, который с помощью помпы выводится из клетки. Переносчики совершают челночные движения за счет работы Nа/К-насоса — вторично активно и транспортируют с собой Са2+ и Н+. Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Что касается вторичного транспорта ионов, то он осуществляется, как правило, с помощью простой диффузии через специальные ионные каналы. Ионные каналы Ионные каналы образованы белками, они весьма разнообразны по устройству и механизму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управляемого ионного канала обычно длится около 1 мс, иногда до 3 мс и значительно больше, при этом через один канал может пройти 12—20 млн ионов. Классификация ионных каналов проводится по нескольким признакам. По возможности управления их функцией различают управляемые и неуправляемые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах. По скорости движения ионов каналы могут быть быстрыми и медленными. Например, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с быстрыми каналами для Nа+ и К+ важную роль играют медленные каналы — кальциевые, калиевые и натриевые. В зависимости от стимула, активирующего или инактивирующего, управляемые ионные каналы различают несколько их видов: а) потенциалчувствительные, б) хемочувствительные,в) механочувствительные, г) кальцийчувствительные, д) каналы, чувствительные ко вторым посредникам. Последние расположены во внутриклеточных мембранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить открытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д — это биологически активное вещество или фармакологический препарат, активирующий или блокирующий рецептор. Открытие хемочувствительных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие электрический заряд. Механочувствительные каналы активируются и инактивируются сдавливанием и растяжением. Кальцийчувствительные каналы активируются, как видно из названия, кальцием, причем Са2+ может активировать как собственные каналы, например Са-каналы саркоплазматического ретикулума, так и каналы других ионов, например каналы ионов К+. Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные каналы. Следует заметить, что кальций-чувствительные каналы — это один из примеров хемочувствительных каналов. В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть каналы, пропускающие несколько ионов, например Nа+, К+ и Са2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нервно-мышечном синапсе активируются ионные каналы, через которые проходят одновременно ионы Nа+, К+ и Са2+. Механочувствительные каналы являются вообще неселективными для одновалентных ионов и Са2+. Один и тот же ион может иметь несколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие. Каналы для К+: а) неуправляемые каналы покоя (каналы утечки) через которые К+ постоянно выходит из клетки, что является главным фактором в формировании мембранного потенциала(потенциала покоя); б) потенциалчувствительные управляемые К-каналы; в) К-каналы, активируемые Са2+; г) каналы, активируемые и другими ионами и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца. Каналы для Nа+ — управляемые быстрые и медленные и неуправляемые (каналы утечки ионов): а) потенциалчувствительные быстрые Na-каналы — быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа+ в клетку во время ее возбуждения; б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мышечном синапсе, глутаматом — в синапсах нейронов ЦНС; в) медленные неуправляемые Nа-каналы—каналы утечки, через которые Nа+ постоянно диффундирует в клетку и пере носит с собой другие молекулы, например глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа+ в формировании мембранного потенциала. Каналы для Са2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и быстрые: а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембраны, обусловливают медленный вход Са2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС; б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са2+ в гиалоплазму и электромеханическое сопряжение. Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в небольшом количестве в нейронах и сконцентрированы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, рецепторуправляемые в синапсах ЦНС и активируются тормозными медиаторами ГАМК и глицином. Структура ионных каналов и их функционирование. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм; каналы заполнены жидкостью, их размеры 0,3—0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диаметр иона Nа+, например, с гидратной оболочкой равен 0,3 нм, а без гидратной оболочки — 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеивания» не в состоянии объяснить, например, почему К+ не проходит через открытые Nа-каналы в начале цикла возбуждения клетки, но тем не менее она дает удовлетворительное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (селективной) проницаемости клеточных мембран для разных частиц и ионов. У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых каналов способствует активации рядом расположенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Частичная деполяризация клеточной мембраны за счет активации механочувствительных каналов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+. Ионные каналы блокируются специфическими веществами и фармакологическими препаратами, что широко используется с лечебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхолином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые — двухвалентными ионами, например ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успешное изучение ионных каналов дает возможность глубже понять механизм действия фармакологических препаратов, а значит, более успешно применять их в клинической практике. Новокаин, например, как местный анестетик снимает болевые ощущения потому, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волокнам. Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществляется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает переход других, о чем свидетельствуют многие факты. В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку. Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и распространение возбуждения. Процесс перехода воды из одной области в другую, согласно закону осмоса, обеспечивает транспорт всех частиц, растворенных в ней и способных пройти через биологические фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на перенос частиц, растворенных в воде, которые следуют вместе с водой. Натрийзависимый транспорт (транспорт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает перемещение мембранных переносчиков, соединенных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-переносчиков, которые в свою очередь транспортируют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрационному градиенту переносчиков. Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энергии. Диффузия газов в легких между воздухом и кровью, а также в тканях между кровью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организма и легких. Диффузия веществ из кишечника, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту концентрации, на создание которого клетки организма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц — в кишечнике) являются исключением, когда транспорт в организме осуществляется вообще без затраты энергии. Однако энергия расходуется на доставку этих веществ в организм — дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе. Энергия, затрачиваемая сердцем на движение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование. Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме. Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирование мембранных потенциалов клеток мышечной и нервной тканей, одной из функций последней является регуляция различных систем организма. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |