АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Потенциал покоя (ПП)

Читайте также:
  1. I. Определение потенциального валового дохода.
  2. Ri – внешний потенциал созидания
  3. Ri – внутренний потенциал созидания
  4. Анализ воспитательного потенциала семьи. Методы изучения семьи.
  5. Аудит кадрового потенциала
  6. Аудит кадрового потенциала
  7. Велосипедный транспорт г. Твери: состояние и потенциальное влияние на различные сферы жизни города
  8. Велосипедный транспорт г. Твери: состояние и потенциальное влияние на различные сферы жизни города
  9. Влияние ионной силы раствора на величину редоксипотенциала
  10. Влияние комплексообразования или образования малорастворимых соединений на величину редоксипотенциала
  11. Влияние рН раствора на величину редоксипотенциала
  12. Внутрифирменное обучение как технология развития кадрового потенциала организации

Потенциал покоя — относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточ­ной мембраны. Его величина обычно варьи­рует в пределах 30—90 мВ (в волокнах ске­летной мышцы — 60—90 мВ, в нервных клет­ках — 50—80 мВ, в гладких мышцах — 30— 70 мВ, в сердечной мышце — 80—90 мВ). При регистрации ПП луч осциллографа во время прокола мембраны клетки микро­электродом скачком отклоняется и показы­вает отрицательный заряд внутри.

ПП играет исключительно важную роль в жизнедеятельности самой клетки и организ­ма в целом, поскольку является основой для возникновения возбуждения (потенциала действия), с помощью которого нервная сис­тема воспринимает и перерабатывает инфор­мацию, регулирует деятельность внутренних органов и опорно-двигательного аппарата посредством запуска процессов возбуждения и сокращения в мышце. Нарушение процес­сов возбуждения в кардиомиоцитах ведет к остановке сердца.

Согласно мембранно-ионной теории [Бернштейн, Ходжкин, Хаксли, Катц, 1902— 1952], непосредственной причиной формиро­вания ПП является неодинаковая концентра­ция анионов и катионов внутри и вне клетки (табл. 1).

В нервных и мышечных клетках концент­рация К+ внутри клетки в 30—40 раз больше, чем вне клетки; концентрация Na+ вне клет­ки в 10—12 раз больше, нежели в клетке. Ионов Сl-вне клетки в 30—50 раз больше, чем внутри клетки. В клетке имеется неболь­шое количество ионов Mg2+. Кальций в сво­бодном состоянии находится в основном вне клетки. Он содержится также в эндоплазматическом ретикулуме; в гиалоплазме его очень мало. Это обусловливается отчасти ак­тивным транспортом Са2+ наружу через кле­точную мембрану, отчасти поглощением его эндоплазматическим ретикулумом (это резе­рвуар для Са2+) и другими органеллами, на­пример митохондриями, связыванием Са2+ цитратом, глутаматом.

В клетке находятся также крупномолеку­лярные анионы; главным образом это отри­цательно заряженные белковые молекулы, например глутамат, аспартат, а также органи­ческие фосфаты. Различные ионы распреде­лены неравномерно по обе стороны клеточ­ной мембраны, во-первых, вследствие неоди­наковой проницаемости клеточной мембра­ны для различных ионов, во-вторых — в ре­зультате работы ионных насосов, транспор­тирующих ионы в клетку и из клетки вопре­ки концентрационному и электрическому градиентам.

 

Таблица 1. Внутри- и внеклеточные концент­рации ионов (ммоль∙ л-1) в мышечных клетках гомойотермных животных (А- — высокомолекуляр­ные внутриклеточные анионы)

 

  Внутриклеточная концентрация   Внеклеточная концентрация
Na+   Na+  
К+   К+  
Са2+ 10-8 -10-7 Са2+  
Cl-   Сl- 120-130
НСОз   НСОз  
А-   Прочие катионы  

 

 

Роль проницаемости клеточной мембраны в формировании ПП. Проницаемость клеточной мембраны — это ее способность пропускать воду, незаряженные и заряженные частицы (ионы) согласно законам диффузии и фильт­рации. Проницаемость клеточной мембраны определяется следующими факторами: 1) на­личием в составе мембраны различных ион­ных каналов — управляемых (с воротным ме­ханизмом) и неуправляемых (каналов утеч­ки); 2) размерами каналов и размерами час­тиц; 3) растворимостью частиц в мембране (клеточная мембрана проницаема для раство­римых в ней липидов и непроницаема для пептидов).

Термин «проводимость» следует использо­вать только лишь применительно к заряжен­ным частицам. Следовательно, проводи­мость — это способность заряженных частиц (ионов) проходить через клеточную мембра­ну согласно электрохимическому градиенту.

Ионы, подобно незаряженным частицам, переходят через мембрану из области с высокой концентрацией в область с низкой кон­центрацией. При большом градиенте концентра­ции и хорошей проницаемости мембраны, разде­ляющей соответствующие растворы, проводи­мость ионов может быть высокой, при этом на­блюдается односторонний ток ионов. Если раз­ность концентраций ионов по обе стороны мем­браны снизится, то проводимость ионов также уменьшится, хотя проницаемость сохранится прежней — высокой. Кроме того, проводимость иона при неизменной проницаемости мембраны зависит и от заряда иона: одноименные заряды отталкиваются, разноименные — притягиваются. Возможна ситуация, когда при хорошей проница­емости мембраны проводимость ионов через мем­брану оказывается низкой или нулевой в случае отсутствия движущей силы — концентрационного и(или) электрического градиентов (их совокуп­ность называют электрохимическим градиентом).

Таким образом, проводимость иона зави­сит от его электрохимического градиента и от проницаемости мембраны: чем они больше, тем лучше проводимость иона через мембра­ну. Перемещения ионов в клетку и из клетки, согласно концентрационному и электричес­кому градиентам в состоянии покоя клетки, осуществляются преимущественно через не­управляемые (без воротного механизма) каналы, их называют также каналами утечки. Неуправляемые каналы всегда открыты, они практически не меняют своей пропускной способности при электрическом воздействии на клеточную мембрану и ее возбуждении. Неуправляемые каналы подразделяются на ионоселективные каналы (например, калие­вые медленные неуправляемые каналы) и иононеселективные каналы. Последние про­пускают различные ионы — К+, Na+, Сl-.

Роль проницаемости клеточной мембра­ны и различных ионов в формировании ПП. Na+ и К+ в покоящейся клетке перемещаются через мембрану согласно законам диффузии, при этом К+ из клетки выходит в значитель­но большем количестве, чем входит Na+ в клетку, поскольку проницаемость клеточной мембраны для К+ примерно в 25 раз больше проницаемости для Na+.

Органические анионы из-за своих больших размеров не могут выходить из клетки, поэ­тому внутри клетки в состоянии покоя отри­цательных ионов оказывается больше, чем положительных. По этой причине клетка из­нутри имеет отрицательный заряд. Интерес­но, что во всех точках клетки отрицательный заряд практически одинаков. Об этом свиде­тельствует одинаковая величина ПП при вве­дении микроэлектрода на разную глубину внутрь клетки, как это имело место в опытах Ходжкина, Хаксли и Катца. Гигантский аксон кальмара (его диаметр около 1 мм) в этом опыте находился в морской воде, один электрод вводился в аксон, другой помещали в морскую воду. Заряд внутри клетки являет­ся отрицательным как абсолютно (в гиалоплазме клетки содержится больше анионов, нежели катионов), так и относительно на­ружной поверхности клеточной мембраны. Однако превышение абсолютного числа анионов над числом катионов в клетке чрез­вычайно мало. Но этого различия достаточно для создания разности электрических потен­циалов внутри и вне клетки.

Главным ионом, обеспечивающим форми­рование ПП, является ион К+. Об этом сви­детельствуют результаты опыта с перфузией внутреннего содержимого гигантского аксо­на кальмара солевыми растворами. При уменьшении концентрации К+ в перфузате ПП уменьшается, при увеличении концент­рации К+ ПП увеличивается. В покоящейся клетке устанавливается динамическое равно­весие между числом выходящих из клетки и входящих в клетку ионов К+. Электрический и концентрационный градиенты противодей­ствуют друг другу: согласно концентрацион­ному градиенту К+ стремится выйти из клет­ки, отрицательный заряд внутри клетки и по­ложительный заряд наружной поверхности клеточной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К+ сравнивается с числом входящих ионов К+ в клетку. В этом случае на клеточной мембране устанавливается так называемый равновесный калиевый потен­циал.

Равновесный потенциал для любого иона можно рассчитать по формуле Нернста. Кон­центрация положительно заряженного иона, находящегося снаружи, в формуле Нернста располагается в числителе, иона, находяще­гося внутри клетки, — в знаменателе. Для от­рицательно заряженных ионов расположение противоположное.

 

 

где Eion — потенциал, создаваемый данным ионом; R — газовая постоянная (8,31 Дм); Т — абсолютная температура (273+37 °С); Z — валентность иона; F — постоянная Фарадея (9,65-1 04); [ion]i — концентрация иона внутри клетки inside; [ion]0 — концентрация иона во внешней среде клетки (outside).

При температуре 37 °С равновесный по­тенциал для К+ с учетом соотношения кон­центрации его снаружи и изнутри (1/39) и ва­лентности 1 равен —97 мВ. Однако реальный ПП миоцита теплокровного животного не­сколько меньше — около —90 мВ. Это объяс­няется тем, что в создании потенциала ПП принимают участие и другие ионы, хотя их роль менее значительна в сравнении с ролью иона К+. Равновесный потенциал для Na+ равен +55 мВ. В целом ПП — это производное равновесных потенциалов всех ионов, находя­щихся внутри и вне клетки и поверхностных зарядов клеточной мембраны.

Вклад Na+ и Сl- в создание ПП. Проницае­мость клеточной мембраны в покое для Na+ очень низкая — намного ниже, чем для К+, тем не менее она имеет место, поэтому ионы Na+, согласно концентрационному и элект­рическому градиентам, стремятся и в неболь­шом количестве проходят внутрь клетки. Это ведет к уменьшению ПП, так как на внешней поверхности клеточной мембраны суммарное число положительно заряженных ионов уменьшается, хотя и незначительно, а часть отрицательных ионов внутри клетки нейтра­лизуется входящими в клетку положительно заряженными ионами Na+. Вход Na+ внутрь клетки уменьшает ПП. Что касается Сl -, его влияние на величину ПП противоположно влиянию Na+ и зависит от проницаемости клеточной мембраны для Сl - (она в 2 раза ниже, чем для К+). Дело в том, что Сl -, со­гласно концентрационному градиенту, стремится и проходит в клетку. Концентрации ионов К+ и Сl - близки между собой. Но Сl - находится в основном вне клетки, а К+ — внутри клетки. Препятствует входу Сl - в клетку электрический градиент, поскольку заряд внутри клетки отрицательный, как и заряд Сl -. Наступает равновесие сил кон­центрационного градиента, способствующего входу Сl - в клетку, и электрического гради­ента, препятствующего входу Сl - в клетку. Поэтому внутриклеточная концентрация Сl - равна всего лишь 5—10 ммоль/л, а вне клет­ки — 120—130 ммоль/л. При поступлении Сl - внутрь клетки число отрицательных зарядов вне клетки несколько уменьшается, а внутри клетки увеличивается: Сl - добавляется к крупным белковой природы анионам, нахо­дящимся внутри клетки. Эти анионы из-за своих больших размеров не могут пройти через каналы клеточной мембраны нару­жу клетки — в интерстиций. Таким образом, Сl-, проникая внутрь клетки, увеличивает ПП. Частично, как и вне клетки, Na+ и Сl - внутри клетки нейтрализуют друг друга. Вследствие этого совместное поступление Na+ и Сl - внутрь клетки не сказывается су­щественно на величине ПП.

Роль поверхностных зарядов клеточной мембраны и ионов Са2+ в формировании ПП. Наружная и внутренняя поверхности клеточ­ной мембраны несут собственные электри­ческие заряды, преимущественно с отрица­тельным знаком. Это полярные молекулы клеточной мембраны — гликолипиды, фосфолипиды, гликопротеиды. Фиксированные наружные отрицательные заряды, нейтрали­зуя положительные заряды внешней поверх­ности мембраны, уменьшают ПП. Фиксиро­ванные внутренние отрицательные заряды клеточной мембраны, напротив, суммируясь с анионами внутри клетки, увеличивают ПП. Роль ионов Са2+ в формировании ПП заклю­чается в том, что они взаимодействуют с на­ружными отрицательными фиксированными зарядами мембраны клетки и отрицательны­ми карбоксильными группами интерстиция и нейтрализуют их, что ведет к увеличению и стабилизации ПП.

Таким образом, ПП — это алгебраическая сумма не только всех зарядов ионов вне и внут­ри клетки, но также алгебраическая сумма отрицательных внешних и внутренних поверх­ностных зарядов самой мембраны. Роль про­ницаемости клеточной мембраны в проис­хождении ПП иллюстрируется на модельном опыте (рис.1).

Сосуд разделен полупроницаемой мембра­ной. Обе его половины заполнены раствора ми K2SO4 различной концентрации (С1 и С2), причем С1< С2. Мембрана проницаема для К+ и непроницаема для SO2-4. Ионы К+ переме­щаются, согласно концентрационному гра­диенту, из раствора С2 в раствор С1. Посколь­ку ионы SO2-4 не могут пройти в раствор С1, где их концентрация тоже ниже, мембрана поляризуется и между двумя ее поверхностя­ми возникает разность электрических потен­циалов, соответствующая равновесному ка­лиевому потенциалу (Ек). В растворе С2 оста­ется больше отрицательных зарядов, в рас­творе С1 становится больше положительных зарядов.

При проведении измерений потенциал ок­ружающей клетку среды принимают за вели­чину, равную нулю. Относительно нулевого потенциала внешней среды потенциал внут­ренней среды клетки, как отмечалось выше, составляет величину порядка —60—90 мВ. Повреждение клетки приводит к повышению проницаемости клеточных мембран, в ре­зультате чего различие проницаемости для К+ и Na+ уменьшается; ПП при этом снижается. Подобные изменения встречаются при ишемии ткани, например миокарда. У сильно по­врежденных клеток ПП может снизиться до уровня доннановского равновесия, что нару­шает электрическую активность клеток орга­на в целом или его части. Однако и в норме происходит перемещение ионов согласно электрохимическому градиенту.

 
Роль ионных насосов в формировании ПП. В результате непрерывного перемещения различных ионов через клеточную мембрану их концентрация внутри и вне клетки посте­пенно должна выравниваться. Однако, не­смотря на постоянную диффузию ионов (утечку ионов), ПП клеток остается на одном уровне. Следовательно, кроме собственных ионных механизмов формирования ПП, свя­занных с различной проницаемостью клеточ­ной мембраны, имеется активный механизм поддержания градиентов концентрации раз­личных ионов внутри и вне клетки. Им явля­ются ионные насосы, в частности Na/K-насос (помпа).

 
,
Ионный насос — транспортная система, обеспечивающая перенос иона с непосредст­венной затратой энергии вопреки концентра­ционному и электрическому градиентам. Если заблокировать освобождение энергии, например, динитрофенолом, в течение 1 ч выведение Na+ из клетки сократится пример­но в 100 раз. Как выяснилось, выведение Na+ сопряжено с транспортом К+, что можно продемонстрировать при удалении К+ из на­ружного раствора. Если К+ на наружной сто­роне мембраны нет, работа насоса блокиру­ется, перенос Na+ из клетки в этом случае па­дает, составляя примерно 30 % от нормаль­ного уровня. Сопряженность транспорта Na+ и К+ уменьшает расход энергии примерно в 2 раза по сравнению с той, которая потребо­валась бы при несопряженном транспорте. В целом траты энергии на активный транс­порт веществ огромны: лишь Na/K-насос по­требляет 1/3 всей энергии, расходуемой орга­низмом в покое. За 1 с один Na/K-насос (од­на молекула белка) переносит 150—600 ионов Na+. Накопление Na в клетке стимулирует работу Na/K-насоса, уменьшение Na+ в клет­ке снижает его активность, поскольку снижа­ется вероятность контакта ионов с соответст­вующим переносчиком. В результате сопря­женного транспорта Na+ и К+ поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ обеспечивает один цикл работы Na/K-насоса — перенос трех ионов Na+ за пределы клетки и двух ионов К+ внутрь клетки. Асим­метричный перенос ионов Na/K-насосом поддерживает избыток положительно заря­женных частиц на наружной поверхности клеточной мембраны и отрицательных заря­дов внутри клетки, что позволяет считать Na/K-насос структурой электрогенной, до­полнительно увеличивающей ПП примерно на 5—10 мВ (в среднем около 10 % у разных возбудимых клеток — у одних больше, у дру­гих меньше). Данный факт свидетельствует о том, что решающим фактором в формирова­нии ПП является селективная проницае­мость клеточной мембраны для разных ионов. Если уравнять проницаемость клеточ­ной мембраны для всех ионов, то ПП будет составлять только 5—10 мВ — за счет работы N/K-помпы.

Нормальная величина ПП является необ­ходимым условием возникновения процесса возбуждения клетки, т.е. возникновения и распространения потенциала действия, ини­циирующего специфическую деятельность клетки.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)