|
|||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Глюконеогенез – механизм синтеза глюкозыГлюконеогенез – синтез глюкозы из неуглеводных соединений: ПВК, молочной кислоты; аминокислот, распадающихся до пирувата (в первую очередь, аланина, а также цистеина, глицина, серина, треонина, триптофана); глицерина, субстратов цикла Кребса (оксалацетата и других -). Глюконеогенез является главным метаболическим путём, в котором синтезируется глюкоза. На образование 1 молекулы глюкозы затрачивается 2 молекулы ПВК. Глюконеогенез протекает в печени и корковом веществе почек. В сущности, реакции глюконеогенеза протекают в обратном направлении реакциям гликолиза – за одним важным исключением: требующие затрат энергии стадии гиколиза (гексокиназная, фосфофруктокиназная и пируваткиназная) не могут обратиться вспять. Вместо указанных киназ «работают» другие ферменты:
В глюконеогенезе – 11 реакций, однако только 4 из них (пируваткарбоксилаза, фосфоенолпируваткарбоксикиназа, бифосфатаза и глюкозо-6-фосфатаза) считеются истинными фермнтами этого пути. Пируват является конечным продуктом гликолиза и исходной точкой глюконеогенеза. Рассмотрим начальный этап глюконеогенеза, идущий в обход пируваткиназной реакции гликолиза. Этот этап включает: 1/ две ферментативные реакции, катализируемые ферментами глюконеогенеза пируваткарбоксилазой и фосфоенолПВК-карбоксикиназой, 2/ реакции взаимопревращений оксалацетата в яблочную кислоту. Пируваткарбоксилазная реакция протекает в митохондриях, мембрана которых непроницаема для образующегося оксалацетата (ЩУК). Однако, превращаясь в яблочную кислоту при участии митохондриальной НАД+-зависимой малатдегидрогеназы, малат легко покидает митохондрию и в цитозоле клетки окисляется в ЩУК при участии цитоплазматической НАД+-зависимой малатдегидрогеназы. Дальнейшее превращение ЩУК в фосфоенолПВК происходит в цитозоле клетки.
Рис.3 Последовательность реакций глюконеогенеза С момента образования фосфоенолПВК все реакции, вплоть до образования фруктозо-1,6-бифосфата, идут в направлении, обратном гликолизу. Превращение фруктозо-1,6-бифосфата во фруктозо-6-фосфат катализируется фруктозобифосфатазой. Затем следует реакция, обратная гликолизу. Наконец, последняя реакция глюконеогенеза – фосфатазная. Глюкозо-6-фосфат гидролизуется до глюкозы ферментом глюкозо-6-фосфатазой. Глюкозо-6-фосфатаза – важнейший фермент, ответственный за образование глюкозы из глюкозо-6-фосфата в печени и почки. Именно эти органы являются основными поставщиками глюкозы для тканей организма. Глюкозо-6-фосфатаза практически отсутствует в мышцах – миоциты получают глюкозу из крови. Кроме того, в мышцах синтезируется глюкозо-6-фосфат из глюкозо-1-фосфата в процессе распада гликогена. Подчеркнём, что между гликолизом, протекающим в мышцах при их интенсивной работе, и глюконеогенезом, осуществляемым печенью, существует тесная взаимосвязь (цикл Кори): образующая в мышцах молочная кислота поступает в общий кровоток, захватывается печенью и используется ею в качестве субстрата глюконеогенеза; синтезируемая при этом глюкоза отдаётся в кровототок и метаболизируется мышцами для получения энергии (рис. 6.10). Рис.4. Взаимосвязь между процессами гликолиза и глюконеогенеза.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |