|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Процедура вращения. Выделение и интерпретация факторовСущностью факторного анализа является процедура вращения факторов, то есть перераспределения дисперсии по определённому методу. Цель ортогональных вращений — определение простой структуры факторных нагрузок, целью большинства косоугольных вращений является определение простой структуры вторичных факторов, то есть косоугольное вращение следует использовать в частных случаях. Поэтому ортогональное вращение предпочтительнее. Согласно определению Мюльека простая структура соответствует требованиям: в каждой строке матрицы вторичной структуры V должен быть хотя бы один нулевой элемент; Для каждого столбца k матрицы вторичной структуры V должно существовать подмножество из r линейно-независимых наблюдаемых переменных, корреляции которых с k-м вторичным фактором — нулевые. Данный критерий сводится к тому, что каждый столбец матрицы должен содержать не менее r нулей. У одного из столбцов каждой пары столбцов матрицы V должно быть несколько нулевых коэффициентов (нагрузок) в тех позициях, где для другого столбца они ненулевые. Это предположение гарантирует различимость вторичных осей и соответствующих им подпространств размерности r—1 в пространстве общих факторов. При числе общих факторов больше четырёх в каждой паре столбцов должно быть некоторое количество нулевых нагрузок в одних и тех же строках. Данное предположение дает возможность разделить наблюдаемые переменные на отдельные скопления. Для каждой пары столбцов матрицы V должно быть как можно меньше значительных по величине нагрузок, соответствующих одним и тем же строкам. Это требование обеспечивает минимизацию сложности переменных.
(В определении Мьюлейка через r обозначено число общих факторов, а V — матрица вторичной структуры, образованная координатами (нагрузками) вторичных факторов, получаемых в результате вращения.) Вращение бывает: ортогональным косоугольным. При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид — это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности
Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой: Критерий Кайзера или критерий собственных чисел. Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Критерий каменистой осыпи или критерий отсеивания. Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» — «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев. Критерий значимости. Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия. Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить. Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии. Критерий интерпретируемости и инвариантности. Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант — если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться.
Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии — результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, — однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них. Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями. В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах.
Методы факторного анализа: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |