|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Взвешенных частицОдним из методов освобождения воды от взвешенных примесей является фильтрование ее через пористую среду. Движущей силой процесса фильтрации является разность давления над перегородкой и под фильтрующей перегородкой. Разности давления можно добиться за счет создания вакуума или избыточного давления на границах перегородки. На практике наибольшее распространение получили самотечные открытые фильтры. Необходимый напор в фильтре обеспечивается высотой слоя воды на фильтрующем материале. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -__ - _ - _- _ - _ - _ - _ - _ - _ -_ -_ -_ 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ :::::::::::::3:::::::::::: :::::::::::::::::::::::::: º º º º º º º º º º 4º º º º º º º º º º º º º º º º º º º º º º º º º º
Рис. 2. Самотечный фильтр: 1 – вода на фильтрацию; 2 – илистая пленка; 3 - слой кварцевого песка; 4 – слой гравия; 5 – дренажные трубки. На рис. 2 представлена схема безнапорного открытого фильтра. Вода подается на фильтрующий слой песка, затем она попадает на слой гравия и оказывается в дренажных перфорированных трубках, которые служат для предотвращения уноса частиц песка водой. Высота слоя воды над поверхностью песка составляет не менее 2 м, а толщина фильтрующего слоя песка от 0,7 до 2,0 м. Работа фильтра носит периодический характер. Первый период – подготовительный. Взвешенные частицы, содержащиеся в воде, оседают на поверхности песчаного слоя и постепенно образуют илистую пленку 2. В данный период времени фильтр не полностью очищает воду от взвешенных веществ. Фильтр становится полностью работоспособным, когда илистая пленка окончательно сформируется и ее толщина достигнет нескольких миллиметров. Второй период – рабочий. Вода полностью очищается от взвешенных частиц. Диаметр пор в илистой пленке меньше, чем в слое песка. В данный период работы сооружения фильтрующим материалом является илистая пленка. По мере работы фильтра толщина пленки ила увеличивается и его производительность падает. Третий период – промывка. Илистую пленку удаляют обратным током воды. После этого фильтр снова готов к работе. Кроме указанных природных материалов в качестве фильтров могут быть использованы перфорированные листы и сетки из нержавеющей стали, асбеста, стекловолокна, хлопчатобумажных тканей и другие материалы. Для удаления мелкодисперсных примесей из воды также применяют метод коагуляции. Под коагуляцией понимают совокупность физико-химических процессов, приводящих к укрупнению частиц с целью ускорения их осаждения. При коагуляции происходит осветление и обесцвечивание воды. Природные воды обычно загрязнены частицами, которые несут на себе отрицательный заряд и поэтому между собой не слипаются. С целью нарушения данной устойчивой структуры к воде добавляют коагулянты – соли, образованные слабыми основаниями и сильными кислотами, которые имеют в растворе слабый положительный заряд. Таким образом, между частицами загрязнений и коагулянтами возникают силы взаимного притяжения. Кроме того, коагулянты в воде образуют хлопья гидроксидов металлов, которые быстро оседают под действием силы тяжести. Хлопья обладают способностью сорбировать коллоидные и взвешенные частицы и удерживать их на своей поверхности. В качестве коагулянтов используют различные соли алюминия и железа, чаще всего Al2(SO4)3, FeSO4 и FeCl3. Выбор реагента зависит от концентрации примесей, рН, температуры и солевого состава воды. При попадании коагулянта в воду он диссоциирует на ионы: Al2(SO4)3 ⇆ 2Al3+ + 3SO42-.
Затем происходит ступенчатый гидролиз: Al3+ + НОН ⇆ Al(ОН)2+ + Н+.
Al(ОН)2+ + НОН ⇆ Al(ОН)2+ + Н+.
Al(ОН)2+ + НОН ⇆ Al(ОН)3 ↓+ Н+.
Гидролиз полнее протекает в слабощелочной среде, которая создается бикарбонатом кальция или содой. Коагуляцию проводят в специальных аппаратах - осветлителях. 3 1 .......... 2 6…. ….….. ........... 4 .. …………. 5 ::::::::::::::: 7 Рис. 3. Осветлитель с дырчатым дном: 1 – вода на очистку; 2 – очищенная вода; 3 – воздухоотделитель; 4 – ре- шетка; 5 – труба с отверстиями; 6 - осадок; 7–шлам. Осветлитель (рис. 3) состоит из двух цилиндров. Вода с добавленным коагулянтом через воздухоотделитель поступает в аппарат, проходя вертикальную и горизонтальную трубу. Таким образом, она попадает в большой цилиндр под решетку, где начинается коагуляция. Затем вода проходит снизу вверх через слой взвешенного осадка. Избыток осадка накапливается во внутреннем цилиндре и периодически выводится в нижней части осветлителя. Осветленная таким образом вода выводится через верхнюю часть аппарата. Соли железа как коагулянты, имеют ряд преимуществ перед солями алюминия: лучшее действие при низких температурах; более широкая область оптимальных значений рН среды; большая прочность и крупность образующихся хлопьев; способность устранять вредные запахи и привкусы. Однако имеются и недостатки: образование окрашивающих растворимых комплексов; сильные кислотные свойства, усиливающие коррозию аппаратуры. Наилучший результат может быть достигнут при совместном использование солей железа и алюминия. При этом происходит ускорение процессов коагуляции и осаждения хлопьев. Кроме названных коагулянтов для обработки воды могут быть использованы различные глины, алюминийсодержащие отходы производства, шлаки, содержащие диоксид кремния. Разновидностью коагуляции является флокуляция – процесс агрегации взвешенных частиц при добавлении в воду флокулянтов, таких как кремниевая кислота и различные высокомолекулярные соединения (полиакриламид, крахмал, производные целлюлозы). Механизм взаимодействия флокулянта с коллоидной частицей складывается из двух фаз. Сначала полимер адсорбируется на частице. При этом фиксируется только один конец флокулянта, а другой остается в растворе. Затем две частицы с адсорбированными молекулами флокулянта объединяются вместе. Полимер становится мостиком между двумя частицами. Такое взаимодействие частиц протекает быстро по всему объему системы. Существенную роль в процессе сендиментации играет доза флокулянта. При недостатке реагента он не может связать все твердые частицы. При оптимальном количестве вве- денного флокулянта в воде формируются отдельные, не связанные между собой агрегаты способные быстро осаждаться. При повышенном содержании высокомолекулярных веществ образуется густая сетка из ассоциированных молекул полимера, которая препятствует сближению и агрегации частиц суспензии. Электрохимическая коагуляция также с успехом используется для обработки воды. Сущность метода основана на анодном растворении алюминиевых или железных пластин при прохождении через систему постоянного электрического тока. Для этого пластины присоединяются поочередно к положительному и отрицательному полюсам источника тока большой силы и низкого напряжения. При этом ионы металла переходят в воду, образуя в ней гидроокись. Достоинствами этого метода является быстрое образование и осаждение прочных хлопьев, а также отсутствие необходимости корректировки рН. К недостаткам относится значительный расход электроэнергии. С целью экономии электроэнергии рекомендуется: плотность тока не более 10 А/м , расстояние между электродами не более 20 мм, скорость движения воды между электродами не менее 0,5 м/с, периодическое изменение потенциалов электродов или их вращение. Возможным вариантом электрохимической коагуляции является использование нерастворимых электродов. В данном случае коагуляция происходит в результате разряда заряженных частиц на электродах. Материалом для изготовления электродов служат титан или двуокись свинца. Во время электрокоагуляции на электродах образуются газообразные вещества: хлор, кислород, водород, которые разрушают сольватные слои на поверхности частиц и они начинают слипаться. Пузырьки газообразных веществ способны также захватывать небольшие частицы примесей и поднимать их на поверхность – этот процесс называется электрофлотацией.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |