АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Общелогические методы и приемы познания

Читайте также:
  1. I. Методы выбора инновационной политики
  2. II. Методы прогнозирования и поиска идей
  3. Административные методы управления
  4. Административные методы управления природопользованием и охраной окружающей среды.
  5. Анализ воспитательного потенциала семьи. Методы изучения семьи.
  6. Анализ результатов теста. Стили и методы семейного воспитания
  7. Антропогенные воздействия на гидросферу и их экологические последствия. Методы защиты гидросферы.
  8. Базовые методы реанимации
  9. Бальнеологические методы лечения
  10. Биологические методы.
  11. В. Методы экономической теории
  12. Введение в лабораторный практикум. Техника безопасности. Методы измерений различных величин и обработка экспериментальных данных.

1. Анализ (греч. analisis – разложение) – разделение объекта на составные части с целью их самостоятельного изучения. Применяется как в реальной (практика), так и в мыслительной деятельности.

Различают следующие виды анализа: механическое расчленение; определение динамического состава; выявление форм взаимодействия элементов целого; нахождение причин явлений; выявление уровней знания и его структуры и др. Анализ не должен упускать качество предметов. В каждой области знания есть свой предел членения объекта, за которым – переход в иной мир свойств и закономерностей (атом, молекула и т. п.). Разновидностью анализа является также разделение классов (множеств) предметов на подклассы – классификация и периодизация.

2. Синтез (греч. synthesis – соединение) – объединение, реальное или мысленное, различных сторон, частей предмета в единое целое. Это органическое целое (а не агрегат, механическое целое), т. е. единство многообразного.

Синтез – это не произвольное, эклектическое соединение изъятых частей, кусков целого, а диалектическое целое с выделением сущности. Для современной науки характерен не только внутри-, но и междисциплинарный синтез, а также синтез науки и других форм общественного сознания. Результатом синтеза является совершенно новое образование, свойства которого не есть только внешнее соединение свойств компонентов, это также и результат их внутренней взаимосвязи и взаимозависимости.

Анализ и синтез диалектически взаимосвязаны, однако некоторые виды деятельности являются по преимуществу аналитическими (например, аналитическая химия) или синтетическими (например, синергетика).

3. Абстрагирование. Абстракция (лат. abstractio – отвлечение) – это:

· сторона, момент, часть целого, фрагмент действительности, нечто неразвитое, одностороннее, фрагментарное (абстрактное);

· процесс мысленного отвлечения от ряда свойств и отношений изучаемого явления с одновременным выделением интересующих познающего субъекта в данный момент свойств (абстрагирование);

· результат абстрагирующей деятельности мышления (абстракция в узком смысле).

Это различного рода «абстрактные предметы» – отдельно взятые понятия и категории («белизна», «развитие», «мышление» и пр.) и их системы, Наиболее развитыми из них являются математика, логика и философия.

Выяснение того, какие из рассматриваемых свойств являются существенными, а какие второстепенными – главный вопрос абстрагирования. Вопрос о том, что в объективной действительности выделяется абстрагируемой работой мышления, а от чего мышление отвлекается, в каждом конкретном случае зависит, прежде всего, от природы изучаемого предмета, а также от задач познания. В ходе своего исторического развития наука восходит от одного уровня абстрактности к другому, более высокому. Существуют различные виды абстракций:

· Абстракции отождествления, в результате которых выделяются общие свойства и отношения изучаемых предметов (от остальных свойств при этом отвлекаются). Здесь образуются соответствующие им классы на основе установ­ления равенства предметов в данных свойствах или отношениях, осуществляется учет тождественного в предметах и происходит абстрагирование от всех различий между ними.

· Изолирующая абстракция – акты «чистого отвлечения», выделяются некоторые свойства и отношения, которые начинают рассматриваться как самостоятельные индивидуальные предметы («абстрактные предметы» – «доброта», «белизна» и т. п.).

· Абстракция актуальной бесконечности в математике – бесконечные множества рассматриваются как конечные. Исследователь отвлекается от принципиальной невозможности зафиксировать и описать каждый элемент бесконечного множества, принимая такую задачу как решенную.

· Абстракция потенциальной осуществимости – основана на том, что может быть осуществлено любое, но конечное число операций в процессе математической деятельности.

Абстракции различаются также по уровням (порядкам). Абстракции от реальных предметов – это абстракции первого порядка. Абстракции от абстракций первого уровня – абстракции второго порядка и т. д. Самым высоким уровнем абстракции обладают философские категории.

4. Идеализация чаще всего рассматривается как специфический вид абстрагирования. Идеализация – это мысленное конструирование понятий об объектах, не существующих и не осуществимых в действительности, но таких, для которых имеются прообразы в реальном мире.

В процессе идеализации происходит предельное отвлечение от всех реальных свойств предмета с одновременным введением в содержание образуемых понятий признаков, не реализуемых в действительности. В результате образуется так называемый «идеализированный объект», которым может оперировать теоретическое мышление при отражении реальных объектов. В результате идеализации образуется такая теоретическая модель, в которой характеристики и стороны познаваемого объекта не только отвлечены от фактического эмпирического материала, но и путем мысленного конструирования выступают в более резко и полно выраженном виде, чем в самой действительности.

Примерами понятий, являющихся результатом идеали­зации, являются такие понятия, как «точка» (нельзя найти в реальном мире объект, представляющий собой точ­ку, т. е. объект без измерений); «прямая линия», «абсолютно черное тело», «идеальный газ». Идеализированный объект, в конечном счете, выступает как отражение реальных предметов и процессов. Образовав с помощью идеализации о такого рода объектах теоретические конструкции, можно и в дальнейшем оперировать с ними в рассуждениях как с реально существующей вещью и строить абстрактные схемы реальных процессов, служащие для более глубокого их понимания.

Таким образом, идеализированные предметы не являются чистыми фикциями, не имеющими отношения к реальной действительности, а представляют собой результат весьма сложного и опосредованного ее отражения. Идеализированный объект представляет в познании реальные предметы, но не по всем, а лишь по некоторым жестко фиксированным признакам. Он представляет собой упрощенный и схематизированный образ реального предмета. Теоретические утверждения, как правило, непосредственно относятся не к реальным объектам, а к идеализированным объектам, познавательная деятельность с которыми позволяет устанавливать существенные связи и закономерности, недоступные при изучении реальных объектов, взятых во всем многообразии их эмпирических свойств и отношений. Идеализированные объекты – результат различных мыслительных экспериментов, направленных на реализацию некоторого нереализуемого в природе случая. В развитых научных теориях обычно рассматриваются не отдельные идеализированные объекты и их свойства, а целостные системы идеализированных объектов и их структуры.

5. Обобщение – процесс установления общих свойств и признаков предметов. Оно тесно связано с абстрагированием. Гносеологической основой обобщения являются категории общего и единичного.

Всеобщее (общее) – философская категория, отражающая сходные, повторяющиеся черты и признаки, которые принадлежат нескольким единичным явлениям или всем предметам данного класса.

Необходимо различать два вида общего:

а) абстрактно-общее как простая одинаковость, внешнее сходство, поверхностное подобие ряда единичных предметов (так называемый «абстрактно-общий признак», например, у всех людей – в отличие от животных – наличие ушной мочки). Данный вид всеобщего, выделенного путем сравнения, играет в познании важную, но ограниченную роль;

б) конкретно-общее как закон существования и развития ряда единичных явлений в их взаимодействии в составе целого, как единство в многообразии. Данный вид общего выражает внутреннюю, глубинную, повторяющуюся у группы сходных явлений основу – сущность в ее развитой форме, т. е. закон. Общее неотрывно от единичного (отдельного) как своей противоположности, а их единство – особенное. Единичное (индивидуальное, отдельное) – философская категория, выражающая специфику, своеобразие именно данного явления (или группы явлений одного и того же качества), его отличие от других. Она тесно связана с категориями всеобщего (общего) и особенного.

В соответствии с двумя видами общего различают виды научных обобщений: выделение любых признаков (абстрактно-общее) или существенных (конкретно-общее, закон).

По другому основанию можно выделить следующие обобщения:

1) от отдельных фактов, событий к их выражению в мыслях (индуктивное обобщение);

2) от одной мысли к другой, более общей мысли (логическое обобщение). Мысленный переход от более общего к менее общему есть процесс ограничения.

Обобщение не может быть беспредельным. Его пределом являются философские категории, которые не имеют родового понятия и потому обобщить их нельзя.

6. Индукция (лат. inductio – наведение) – логический прием исследования, связанный с обобщением результатов наблюдений и экспериментов и движением мысли от единичного к общему.

В индукции данные опыта «наводят» на общее, индуцируют его. Поскольку опыт всегда бесконечен и неполон, то индуктивные выводы всегда имеют проблематичный (вероятностный) характер. Индуктивные обобщения обычно рассматривают как опытные истины или эмпирические законы.

Выделяют следующие виды индуктивных обобщений:

А) Индукция популярная, когда регулярно повторяющиеся свойства, наблюдаемые у некоторых представителей изучаемого множества (класса) и фиксируемые в посылках индуктивного умозаключения, переносятся на всех представителей изучаемого множества (класса), включая и неисследованные его части.

Б) Индукция неполная, в которой делается вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Например, «некоторые металлы имеют свойство электропроводности», значит, «все металлы электропроводны».

В) Индукция полная, в которой делается заключение о том, что всем представителям изучаемого множества принадлежит свойство Р на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство Р.

Рассматривая полную индукцию, необходимо иметь в виду следующее:

1. Индукция не дает нового знания и не выходит за пределы того, что содержится в ее посылках. Тем не менее, общее заключение, полученное на основе исследования частных случаев, суммирует содержащуюся в них информацию и позволяет обобщить, систематизировать ее.

2. Однако хотя заключение полной индукции часто имеет достоверный характер, и здесь иногда допускаются ошибки. Последние связаны главным образом с пропуском какого-либо частного случая (иногда сознательно, преднамеренно, чтобы «доказать» свою правоту), вследствие чего заключение не исчерпывает все случаи и тем самым является необоснованным.

3. Индукция научная – кроме формального обоснования полученного индуктивным путем обобщения, в ней дается дополнительное содержательное обоснование его истинности, в т. ч. с помощью дедукции (теории, законы). Научная индукция дает достоверное заключение, поскольку здесь акцент делается на необходимые, закономерные и причинные связи.

4. Индукция математическая – используется как специфическое математическое доказательство с органическим сочетанием индукции с дедукцией, предположения с доказательством.

7. Индуктивные методы установления причинных связей индукции – каноны (правила индуктивного исследова­ния Бэкона-Милля):

а) метод единственного сходства, если наблюдаемые случаи какого-либо явления имеют общим лишь одно обстоятельство, то, очевидно (вероятно), оно и есть причина данного явления.

б) метод единственного различия: если случаи, при ко­торых явление наступает или не наступает, различаются только в одном предшествующем обстоятельстве, а все другие обстоятельства тождественны, то это одно обстоятельство и есть причина данного явления.

в) объединенный метод сходства и различия образуется как подтверждение результата, полученного с помощью метода единственного сходства путем применения к нему метода единственного различия, это комбинация первых двух методов.

г) метод сопутствующих изменений: если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. При этом остальные предшествующие явления остаются неизменными.

Иначе, если при изменении предшествующего явления А изменяется и наблюдаемое явление а, а остальные предшествующие явления остаются неизменными, то отсюда можно заключить, что А является причиной а.

д) метод остатков: если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.

Пусть изучаемое сложное явление К распадается на а, b, с, d. При этом известно, что ему предшествуют обстоятельства А, В, С, где А – причина а, В – причина b, С – причина с. Следовательно, D – причина d – остатка изучаемого явления К. При этом предполагается, что D должно существовать среди предшествующих обстоятельств.

Метод остатков основывается на анализе сложных (составных) причин. Если нам известно, что такое явление зависит от составной причины С, состоящей из двух причин Сх и Су, тогда, если предположить, что причина Сх вызывает действие Е, а составная причина С вызывает действие F, то оставшаяся причина Су должна вызывать действие F.

Рассмотренные методы установления причинных связей чаще всего применяются не изолированно, а во взаимосвязи, дополняя друг друга.

8. Дедукция (лат. dedactio – выведение), это:

а) переход в процессе познания от общего к единичному (частному); выведение единичного из общего;

б) процесс логического вывода, т. е. перехода по тем или иным правилам логики от некоторых данных предложений – посылок к их следствиям (заключениям).

Дедукция, как один из приемов научного познания, тесно связан с индукцией, это диалектически взаимосвязанные способы движения мысли. Аналогия не дает достоверного знания: если посылки рассуждения по аналогии истинны, это еще не значит, что и его заключение будет истинным. Для повышения вероятности выводов по аналогии необходимо стремиться:

а) чтобы были взяты внутренние, а не внешние свойства сопоставляемых объектов;

б) эти объекты были подобны в важнейших и существенных признаках, а не в случайных и второстепенных;

в) круг совпадающих признаков был как можно шире;

г) учитывались не только сходство, но и различия – во избежание возможности переноса последних на другой объект.

10. Моделирование. Умозаключения по аналогии, понимаемые предельно широко – как перенос информации об одних объектах на другие – составляют гносеологическую основу моделирования, метода исследования объектов на их моделях.

Модель (лат. modulus – мера, образец) – в логике и методологии науки – аналог фрагмента реальности, порождения человеческой культуры, концептуально-теоретических образов и прочем, т. е. оригинала модели.

Этот аналог – «представитель», «заместитель» оригинала в познании и практике. Он служит для хранения и расшире­ния знания (информации) об оригинале, конструирования оригинала, преобразования или управления им. Между моделью и оригиналом должно существовать известное сходство (отношение подобия): физических характеристик, функций; поведения изучаемого объекта и его математического описания; структуры и др. Именно это сходство и позволяет переносить информацию, полученную в результате исследования модели, на оригинал.

11. Системный подход – совокупность общенаучных методологических принципов (требований), в основе которых лежит рассмотрение объектов как систем.

Система (греч. systema – целое) – общенаучное понятие, выражающее совокупность элементов, находящихся в отношениях и связях друг с другом и со средой, образующих определенную целостность, единство.

Типы систем весьма многообразны: материальные и ду­ховные, неорганические и живые, механические и органические, биологические и социальные, статичные и динамичные, открытые и замкнутые и т. д. Любая система представляет собой множество разнообразных элементов, обладающих структурой и организацией.

Специфика системного подхода определяется тем, что он ориентирует на раскрытие целостности объекта и обеспечивающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину. Важным понятием системного подхода является понятие «самоорганизация». Данное понятие характеризует процесс создания, воспроизведения или совершенствования организации сложной, открытой, динамичной, саморазвивающейся системы, связи между элементами которой имеют не жесткий, а вероятностный характер.

В современной науке самоорганизующиеся системы являются специальным предметом исследования синергетики – общенаучной теории самоорганизации, ориентированной на поиск законов эволюции открытых неравновесных систем любой природы – природных, социальных, когнитивных (познавательных). Системный подход имеет дело главным образом с развивающимися системами, т. е. включающими в качестве своей наиболее важной характеристики время.

12. Вероятностные (статистические) методы – основаны на учете действия множества случайных факторов, которые характеризуются устойчивой частотой. Это и позволяет вскрыть необходимость, которая «пробивается» через совокупное действие множества случайностей.

Вероятностные методы опираются на теорию вероятностей, которую зачастую называют наукой о случайном, а в представлении многих ученых вероятность и случайность практически нерасторжимы.

Статистическая закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отдельного элемента, сколько коллектива в целом. Необходимость, проявляющаяся в статистических законах, возникает вследствие взаимной компенсации и уравновешивания множества случайных факторов. Статистические законы, хотя и не дают однозначных и достоверных предсказаний, тем не менее, они являются единственно возможными при исследовании массовых явлений случайного характера. За совокупным действием различных факторов случайного характера, которые практически невозможно охватить, статистические законы вскрывают нечто устойчивое, необходимое, повторяющееся. Они служат подтверждением диалектики превращения случайного в необходимое.

Вероятность – понятие, характеризующее количественную меру (степень) возможности появления некоторого случайного события при определенных условиях, которые могут повторяться. Одна из основных задач теории вероятностей состоит в выяснении закономерностей, возникающих при взаимодействии большого числа случайных факторов.

Вероятностно-статистические методы широко применяются при изучении массовых явлений – особенно в таких научных дисциплинах, как математическая статистика, статистическая физика, квантовая механика, кибернетика, синергетика и т. д.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)