|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
УПРУГИЕ СИЛЫ. ИДЕАЛЬНО УПРУГОЕ ТЕЛО. УПРУГИЕ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ. ЗАКОН ГУКА. МОДУЛЬ ЮНГАВсякое реальное тело под действием приложенных к нему сил деформируется, т.е.изменяет свои размеры и форму. Если после прекращения действия сил тело принимает первоначальные размеры и форму, деформация называется упругой. Упругие деформации наблюдаются в том случае, если сила, обусловившая деформацию, не превосходит некоторый предел, называемый пределом упругости. Тело, в котором возникают только упругие деформации, называется абсолютно упругим.
Рассмотрим пружину, имеющую в недеформированном состоянии длину
Упругие натяжения возникают во всей пружине. Любая часть пружины действует на другую часть с силой, определяемой формулой (2.18). Поэтому, если разрезать пружину пополам, та же по величине упругая сила будет возникать в каждой из половин при в два раза меньшем удлинении. Таким образом, при заданных материале пружины и размерах витка величина упругой силы определяется не абсолютным удлинением пружины При сжатии пружины также возникают упругие натяжения, но другого знака. Обобщим формулу (2.18) следующим образом. Закрепим один конец пружины неподвижно (рис.2.7), а удлинение пружины будем рассматривать как координату
Из рис.2.7 видно, что проекция упругой силы на ось Однородные стержни ведут себя при растяжении или одностороннем сжатии подобно пружине. Если к концам стержня приложить направленные вдоль его оси силы Экспериментально доказано, что для стержней из данного материала относительное удлинение при упругой деформации пропорционально силе, приходящейся на единицу площади поперечного сечения стержня:
Коэффициент пропорциональности a называется коэффициентом упругой податливости. Величина, равная отношению силы к площади поверхности, на которую действует сила, называется напряжением. В результате взаимодействия частей тела друг с другом напряжение передается во все точки тела и весь объем стержня оказывается в напряженном состоянии. Если сила направлена по нормали к поверхности, напряжение называется нормальным и обозначается s. Если сила направлена по касательной к поверхности, возникает тангенциальное напряжение В выражении (2.20) Величина, обратная упругой податливости, называется модулем Юнга Решив записанные уравнения относительно F получаем: Это закон Гука для стержня.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |