Производные высших порядков явно заданной функции
Производная у'=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.
Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у"
Итак, у"=(у')'.
Производная от производной второго порядка, если она существует, называется производной третьего порядка и обозначается у'" (или ƒ'"(х)). Итак, у'"=(y")'
Производной n-го порядка (или n-й производной) называется производная от производной (n-1) порядка:
y(n)=(y(n-1))¢.
Производные порядка выше первого называются производными высших порядков.
Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уν или у(5)— производная пятого порядка).
<< Пример 23.1
Найти производную 13-го порядка функции у=sinx.
Решение:
1 | 2 | 3 | Поиск по сайту:
|