АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ряд Тейлора. Разложение функции в ряд Тейлора

Читайте также:
  1. II. Основные задачи и функции Отдела по делам молодежи
  2. III. ФУНКЦИИ ДЕЙСТВУЮЩИХ ЛИЦ
  3. III. Функции семьи
  4. IV. Порядок и формы контроля за исполнением государственной функции
  5. Wait функции
  6. Абсолютные и относительные ссылки. Стандартные формулы и функции. Логические функции
  7. Акцентная структура слова в русском языке. Система акцентных противопоставлений. Функции словесного ударения.
  8. Акцентная структура слова в русском языке. Функции словесного ударения.
  9. Алгоритм нахождения глобального экстремума функции
  10. Аппарат государства – это система государственных органов, обладающих государственной властью и осуществляющих функции государства.
  11. Аргументы функции main(): argv и argc
  12. Бактерицидные функции

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:

При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Ряд Тейлора в окрестности точки a имеет виды:

1) , где f(x) - функция, имеющая при х=а производные всех порядков. Rn - остаточный член в ряде Тейлора определяется выражением

2)

k-тый коэффициент (при хk) ряда определяется формулой

3)Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0)

при a=0

члены ряда определяются по формуле


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)