Ряд Тейлора. Разложение функции в ряд Тейлора
Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:


При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.
Ряд Тейлора в окрестности точки a имеет виды:
1) , где f(x) - функция, имеющая при х=а производные всех порядков. Rn - остаточный член в ряде Тейлора определяется выражением 
2) 
k-тый коэффициент (при хk) ряда определяется формулой

3)Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0)
при a=0 
члены ряда определяются по формуле

1 | 2 | 3 | Поиск по сайту:
|