Формула Тейлора для многочлена
Пусть функция ƒ(х) есть многочлен Рn(х) степени n:
ƒ(х)=Рn(х)=а0+а1х+а2х2+...+аnхn.
Преобразуем этот многочлен также в многочлен степени n относительно разности х-х0, где х0 — произвольное число, т. е. представим Рn(х) в виде
Рn(х)=А0+A1(x-х0)+А2(х-х0)2+...+Аn(х-х0)n (26.1)
Для нахождения коэффициентов А0, А1,..., Аn продифференцируем n раз равенство (26.1):
Р'n(х)=А1+2А2(х-x0)+3A3(x-x0)2+...+nAn(x-x0)n-1,
Рn''(х)=2А2+2•3А3(х-х0)+...+n(n-1)Аn(х-х0)n-2,
Рn"'(х)=2•3А3+2•3•4А4(х-х0)+...+n(n-1)(n-2)Аn(х-х0)n-3,
- - - - - - - - - - - - - - - - - -
Рn(n)(х)=n(n-1)(n-2)...2•1Аn
Подставляя х=х0 в полученные равенства и равенство (26.1), имеем:
Подставляя найденные значения A0,A1,...,An в равенство (26.1), получим разложение многочлена n-й степени Рn(х) по степеням (х-х0):
Формула (26.2) называется формулой Тейлора для многочлена Рn(х) степени n.
<< Пример 26.1
Разложить многочлен Р(х)=-4х3+3х2-2х+1 по степеням х+1.
Решение: Здесь х0=-1, Р'(х)=-12х2+6х-2, Р"(х)=-24х+6, Р'"(х)=-24. Поэтому Р(-1)=10, Р'(-1)=-20, Р"(-1)=30, Р'"(-1)=-24. Следовательно,
т. е. -4х3+3х2-2х+1=10-20(х+1)+15(х+1)2-4(х+1)3. 1 | 2 | 3 | Поиск по сайту:
|