АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Преобразования типа сигналов

Читайте также:
  1. Алгоритм преобразования области в плоскостных координатах
  2. Военные преобразования.
  3. ВЫВОДЫ ИЗ КАТЕГОРИЧЕСКИХ СУЖДЕНИЙ ПОСРЕДСТВОМ ИХ ПРЕОБРАЗОВАНИЯ
  4. Генератор импульсных сигналов Г5-54
  5. Дискретизация сигналов.
  6. Измерение параметров периодической последовательности импульсных сигналов
  7. Инновации и инновационные преобразования.
  8. Интегро-дифференциально-разностные уравнения Вольтера и интегральные преобразования.
  9. Квантование сигналов при наличии помех.
  10. Кодеры с линейной шкалой преобразования. Классификация. Кодеры взвешивающие.
  11. Кодеры с линейной шкалой преобразования. Классификация. Кодеры последовательного счета.
  12. Культурные преобразования.

Формы математического отображения сигналов, особенно на этапах их первичной регистрации (детектирования) и в прямых задачах описания физических объектов и процессов, как правило, отражают их физическую природу. Однако последнее не является обязательным и зависит от методики измерений и технических средств детектирования, преобразования, передачи, хранения и обработки сигналов. На разных этапах процессов получения и обработки информации как материальное представление сигналов в устройствах регистрации и обработки, так и формы их математического описания при анализе данных, могут изменяться путем соответствующих операций преобразования типа сигналов.

Операция дискретизации осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу. Дискретизация обычно производится с постоянным шагом по аргументу (равномерная дискретизация), при этом s(t) преобразуется в s(n·∆t), где значения s(n·Δt) представляют собой отсчеты функции s(t) в моменты времени t = n·Δt, n = 0, 1, 2,..., N. Частота, с которой выполняются замеры аналогового сигнала, называется частотой дискретизации.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

Дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал, и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Как известно, любая непрерывная функция может быть разложена на конечном отрезке в ряд Фурье, т.е. представлена в спектральной форме - в виде суммы ряда синусоид с кратными (нумерованными) частотами с определенными амплитудами и фазами. У относительно гладких функций спектр быстро убывает (коэффициенты модуля спектра быстро стремятся к нулю). Для представления "изрезанных" функций, с разрывами и "изломами", нужны синусоиды с большими частотами. Говорят, что сигнал имеет ограниченный спектр, если после определенной частоты F все коэффициенты спектра равны нулю, т.е. сигнал представляется в виде конечной суммы ряда Фурье.

Теоремой Котельникова-Шеннона устанавливается, что если спектр сигнала ограничен частотой F, то после дискретизации сигнала с частотой не менее 2F можно восстановить исходный непрерывный сигнал по полученному цифровому сигналу абсолютно точно. Для этого нужно выполнить интерполяцию цифрового сигнала "между отсчетами" специальной функцией (Котельникова-Шеннона).

На практике эта теорема имеет огромное значение. Например, известно, что диапазон звуковых сигналов, воспринимаемых человеком, не превышает 20 кГц. Следовательно, при дискретизации записанных звуковых сигналов с частотой не менее 40 кГц мы можем точно восстановить исходный аналоговый сигнал по его цифровым отсчетам, что и выполняется в проигрывателях компакт-дисков для восстановления звука. Частота дискретизации звукового сигнала при записи на компакт-диск составляет 44100 Гц.

 

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)