АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Алгоритм преобразования области в плоскостных координатах

Читайте также:
  1. D) Семипалатинской области
  2. Административно-территориальное устройство Омской области и порядок его изменения
  3. Актива Совета молодых учителей Ленинградской области
  4. Алгоритм 1. Зупинка артеріальної кровотечі за допомогою закрутки
  5. Алгоритм 3.1. Транспортна іммобілізація
  6. Алгоритм 4.3. Діагностичний і лікувальний (перша медична допомога) пошук при струсі мозку.
  7. Алгоритм L.
  8. Алгоритм RLE
  9. Алгоритм автоматического формирования парных симметричных ключей шифрования-дешифрования открытых сообщений на рабочих станциях абонентов корпоративной системы.
  10. Алгоритм анализа реальности достижения поставленных профессиональных целей.
  11. Алгоритм виконання роботи
  12. АЛГОРИТМ ВИЯВЛЕННЯ ТА ДІАГНОСТИКИ ТУБЕРКУЛЬОЗУ

Пусть M - произвольная точка на плоскости с координатами и , вычисленными относительно заданной прямолинейной координатной системы. Однородными координатами этой точки называется любая тройка одновременно не равных нулю чисел , связанных с заданными числами и следующими соотношениями:

 
 

 

 


 

При решении задач компьютерной графики однородные координаты обычно вводятся так: произвольной точке на плоскости ставится в соответствие точка в пространстве (рис. 3).

Заметим, что производная точка на прямой, соединяющей начало координат точку с точкой , может быть задана тройкой чисел вида . Будем считать, что не равно 0.

Вектор с координатами является направляющим вектором прямой, соединяющей точки и . Эта прямая пересекает плоскость в точке , которая однозначно определяет точку координатной плоскости .

Тем самым между произвольной точкой с координатами и множеством троек чисел вида , при не равной 0, устанавливается (взаимно однозначное) соответствие, позволяющее считать числа новыми координатами этой точки.

В проективной геометрии для однородных координат принято следующее обозначение: или более общее, (напомним, что здесь непременно требуется, чтобы числа одновременно в нуль не обращались).

Применение однородных координат оказывается удобным уже при решении простейших задач.

Рассмотрим, например, вопросы, связанные с изменением масштаба. Если устройство отображения работает только с целыми числами (или если необходимо работать только с целыми числами), то для произвольного значения (например, ) точку с однородными координатами представить нельзя. Однако при разумном выборе можно добиться того, чтобы координаты этой точки были целыми числами. В частности, при для рассматриваемого примера имеем .

Рассмотрим другой случай. Чтобы результаты преобразования не приводили к арифметическому переполнению, для точки с координатами можно взять, например, . В результате получим .

Приведенные примеры показывают полезность использования однородных координат при проведении расчетов. Однако основной целью введения однородных координат в дискретной математике является их несомненное удобство в применении к геометрическим преобразованиям.

При помощи троек однородных координат и матриц третьего порядка можно описать любое аффинное преобразование плоскости.

В самом деле, считая , сравним две записи: помеченную символом * и нижеследующую, матричную:

.

Нетрудно заметить, что после перемножения выражений, стоящих в правой части последнего соотношения, мы получим обе формулы (*) и верное числовое равенство .

Тем самым сравниваемые записи можно считать равносильными.

Элементы произвольной матрицы аффинного преобразования не несут в себе явно выраженного геометрического смысла. Поэтому чтобы реализовать то или иное отображение, т.е. найти элементы соответствующей матрицы по заданному геометрическому описанию, необходимы специальные приемы. Обычно построение этой матрицы в соответствии со сложностью рассматриваемой задачи и с описанными выше частными случаями разбивают на несколько этапов.

На каждом этапе ищется матрица, соответствующая тому или иному из выделенных выше случаев А, Б, В и Г, обладающих хорошо выраженными геометрическими свойствами.

 

Выпишем соответствующие матрицы третьего порядка.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)