|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Быстрое преобразование Уолша
Функции Уолша обладают интересными свойствами, привлекающими к ним все большее внимание. Они принимают всего два значения {+1 или -1} и потому удобны для вычислений на ЭВМ. Существует различное упорядочение функций Уолша.Рассмотрим одну из возможных систем функций Уолша – систему Уолша-Адамара. Элементарная матрица Адамара, состоящая из одного элемента (N=1), имеет вид H1=[1]. Для N=2 элементами матрицы Адамара будут элементарные матрицы ( H1): . Для N = 4 элементами матрицы Адамара будут матрицы ( H2): . Для N=2n имеем . Дискретное преобразование Уолша, как и дискретное преобразование Фурье, представляется в матричной форме: FY=HN*S/N; S= (HN)T*FY.
Здесь FY-коэффициенты спектрального разложения по функциям Уолша, S-дискретные временные отсчеты сигнала. Быстрое преобразование Уолша (БПУ) можно получить из формулы для БПФ (10),исключив фазосдвигающие составляющие. Матрица преобразований упрощается и имеет вид: . Коэффициенты спектрального разложения по функциям Уолша имеют прямую последовательность в отличие от БПФ, имеющей последовательность с двоично-инверсными номерами. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |