АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Элементы систем водяного отопления

Читайте также:
  1. A) на этапе разработки концепций системы и защиты
  2. A) Объективный и системный
  3. B. агроэкосистемой
  4. DNS — доменная система имен
  5. Doctor Web для UNIX-систем.
  6. I. Система грамматических времен в страдательном залоге
  7. I. Системные программы.
  8. I.Дисперсные системы
  9. II. Формальная логика как первая система методов философии.
  10. IV. Центральна нервова система. Черепні нерви. Органи чуття.
  11. IV. Ямайская валютная система
  12. L.1.1. Однокомпонентные системы.

Системы водяного отопления представляют собой сложные многокольцевые гидравлические циркуляционные системы, состоящие из основных элементов: трубопроводов, первичных нагревательных и отопительных приборов, расширительных сосудов-баков, циркуляционных и подпиточных насосов.

Отопительные приборы предназначены для обогрева помещений, причем теплота воздуху и ограждениям помещений передается конвекцией и излучением (радиацией). По преобладающей форме передачи теплоты приборы подразделяют на радиационные, конвективные и конвективно-радиационные. В водяных и паровых системах отопления в основном применяются конвективно-радиационные и конвективные приборы.

Наиболее распространенные типы отопительных приборов: радиаторы отопления (секционные и панельные), конвекторы (с кожухом и без кожуха), ребристые трубы, гладкотрубные регистры, отопительные панели и приборы динамического отопления – вентиляторные конвекторы и децентрализованные нагреватели (доводчики).

В зависимости от использованных при изготовлении отопительных приборов материалов они бывают металлические – из чугуна, стали, алюминия и его сплавов, латуни, меди или комбинации этих металлов, неметаллические – из керамики, фарфора, стекла, бетона и полимерных материалов и комбинированные – например, в виде бетонных панелей с замоноличенными в них трубчатыми регистрами из стали, стекла или полимерных материалов.

По высоте отопительные приборы делят на высокие (высотой более 650 мм), средние (более 400 мм до 650 мм), низкие (более 200 мм до 400 мм) и плинтусные (высотой 200 мм и менее); по глубине в установке (с учетом расстояния от прибора до стены) – малой глубины (до 120 мм включительно), средней глубины (более 120 мм до 200 мм) и большой глубины (более 200 мм).

По тепловой инерции отопительные приборы подразделяют на малоинерционные, имеющие небольшую массу и вмещающие малое количество воды (например, конвекторы), и инерционные массивные, вмещающие значительное количество воды (например, чугунные радиаторы, бетонные панели).

Важнейшая характеристика отопительных приборов – номинальный тепловой поток в киловаттах (кВт), передаваемый прибором от теплоносителя воздуху и ограждениям помещения в нормированных условиях работы отопительного прибора, при которых разность средних температур теплоносителя в приборе и воздуха в помещении составляет Ө = 70°С, расход горячей воды через прибор М = 0,1 кг/с (360 кг/ч), барометрическое давление воздуха в помещении 1013,3 Па (760 мм рт. ст.), а движение теплоносителя в приборе осуществляется по схеме «сверху вниз».

До недавнего времени отопительные приборы характеризовались площадью эквивалентной поверхности нагрева в экм. За 1 экм принималась площадь эквивалентной поверхности нагрева, передающей тепловой поток в 506 Вт при Ө = 64,5°С и М = 17,4 кг/(ч•экм) для радиаторов и ребристых труб или 300 кг/ч для конвекторов при движении теплоносителя по схеме «сверху вниз».

Для секционных радиаторов и конвектора без кожуха 1 экм = 0,56 кВт, для конвекторов с кожухом 1 экм = 0,57 кВт.

Секционный радиатор представляет собой конвективно-радиационный прибор, состоящий из отдельных колончатых элементов – секций с каналами, обычно эллипсообразной формы. Такой отопительный прибор передает от теплоносителя в помещение радиацией около 30 %всего количества теплоты, остальное – конвекцией.

Секции радиатора отливают из чугуна, алюминия или его сплавов либо изготовляют из стали, штампуя половинки секций и сваривая их затем между собой. Секции соединяют на ниппелях – чугунных из ковкого чугуна или стальных с прокладками из термостойкой резины (при температуре теплоносителя до 130°С) или паронита (при температуре свыше 130°С). Секции стальных радиаторов соединяют также на сварке.

Ниппеля, имеющие с одной стороны правую резьбу, с другой – левую, одновременно ввинчивают в две смежные секции вверху и внизу и тем самым стягивают секции между собой: в заводских условиях – с помощью механизма ВМС-11IM, на стройке – специальным ключом. В ниппельные отверстия крайних секций вверху и внизу ввинчивают пробки глухие или с отверстиями диаметром 10, 15 или 20 мм (левой и правой резьбой) – для присоединения радиатора к теплопроводам.

Наиболее распространены чугунные секционные радиаторы отопления МС-140 (ГСХГГ8690-75*) с двумя колонками по глубине (рис.2, а, б), Монтажная высота – расстояние между центрами ниппельных отверстий радиаторов отопления – составляет 500 мм, глубина – 140 мм, длина секции – 108 мм. Промышленностью выпускаются также радиаторы МС-90 малой глубины (90 мм). По специальным заказам изготовляют радиаторы с уменьшенной (до 300 мм) монтажной высотой (М-140А-300, Ст-90-300). Их поставляют обычно сгруппированными по 7…8 секций, но не более 12 в приборе.

В СНиП 23-02-2003 в его обязательном ПРИЛОЖЕНИЕ Г представлен «РАСЧЕТ УДЕЛЬНОГО РАСХОДА ТЕПЛОВОЙ ЭНЕРГИИ НА ОТОПЛЕНИЕ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ ЗА ОТОПИТЕЛЬНЫЙ ПЕРИОД».

Расчетный удельный расход тепловой энергии на отопление зданий за отопительный период , кДж/(м ·°С·сут) или кДж/(м ·°С·сут), следует определять по формуле:

или , (10.4)

где - расход тепловой энергии на отопление здания в течение отопительного периода, МДж;

- сумма площадей пола квартир или полезной площади помещений здания, за исключением технических этажей и гаражей, м ;

- - отапливаемый объем здания, равный объему, ограниченному внутренними поверхностями наружных ограждений зданий, м ;

- - то же, что и в формуле (10.1).

Сильное влияние на оборудование котельной с водогрейными агрегатами оказывает система горячего водоснабжения – закрытая или открытая. Открытой называется система, в которой теплоноситель – горячая вода – частично или полностью используется потребителем. В закрытых системах нагрев воды на горячее водоснабжение осуществляется прямой отопительной водой в местных теплообменниках.

При открытой системе горячего водоснабжения количество воды, идущее на подпитку тепловых сетей, заметно возрастает и может достигать 20% расхода воды через тепловые сети. Т.е. количество воды, которое необходимо подготовить на химводоочистке, при открытой системе горячего водоснабжения возрастает в несколько раз по сравнению с закрытой.

Так как расходы воды при открытой системе неравномерны, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности оборудования водоподготовки устанавливаются баки-аккумуляторы для деаэрированной воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается на всас сетевых насосов.

Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, т.к. к воде горячего водоснабжения предъявляются такие же требования, как к питьевой водопроводной воде.

Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему присоединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В настоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 3.2.

На рис. 10.2 а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 3.2 б, в показаны двухступенчатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения.

Рис. 10.1. Схемы присоединения местных теплообменников: а – параллельное; б – двухступенчатое последовательное; в – смешанная схема включения

 

Выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Q г.в/ Q о≤0,06 присоединение местных теплообменников производится по двухступенчатой последовательной схеме; при 0,6< Q г.в/ Q о≤1,2 – по двухступенчатой смешанной схеме; при Q г.в/ Q о≥1,2 – по параллельной схеме. При двухступенчатой последовательной схеме присоединения местных теплообменников должно предусматриваться переключение теплообменников на двухступенчатую смешанную схему.

Расчет тепловой схемы водогрейной котельной базируется на решении уравнений теплового и материального баланса, составляемых для каждого элемента схемы. При расчете тепловой схемы водогрейной котельной, когда не происходит фазовых превращений нагреваемой и охлаждаемой сред (воды), уравнение теплового баланса в общем виде можно записать следующим образом

 

, ((10.5)

где G ох, G н – массовый расход, соответственно, охлаждаемого и нагреваемого теплоносителей, кг/с; c ох, c н –средняя удельная теплоемкость, соответственно, охлаждаемого и нагреваемого теплоносителей, кДж/(кг·°C); – соответственно, начальная и конечная температуры охлаждаемого теплоносителя, °C; – соответственно, начальная и конечная температуры нагреваемого теплоносителя, °C; η – КПД теплообменника.

При расхождении предварительно принятых в расчете величин с полученными в результате расчета более чем на 3% расчет следует повторить, подставив в качестве исходных данных полученные значения.

 

Отпуск пара технологическим потребителям часто производится от производственных котельных, в которых вырабатывается насыщенный или слабо перегретый пар с давлением до 1,4 или 2,4 МПа. Пар используется технологическими потребителями и в небольшом количестве – на приготовление горячей воды, направляемой в систему теплоснабжения. Приготовление горячей воды производится в сетевых подогревателях, устанавливаемых в котельной.

Принципиальная тепловая схема производственной котельной с отпуском небольшого количества теплоты на нужды отопления, вентиляции и горячего водоснабжения в закрытую систему теплоснабжения показана на рис. 10.2.

Рис. 10.2. Тепловая схема производственной котельной: 1 – паровой котел; 2 – расширитель непрерывной продувки; 3 – насос сырой воды; 4 – барботер; 5 – охладитель непрерывной продувки; 6 – подогреватель сырой воды; 7 – химводоочистка; 8 – питательный насос; 9 – подпиточный насос; 10 – охладитель подпиточной воды; 11 – сетевой насос; 12 – охладитель конденсата; 13 – сетевой подогреватель; 14 – подогреватель химически очищенной воды; 15 – охладитель выпара; 16 – атмосферный деаэратор; 17 – редукционно-охладительная установка

 

Насос сырой воды подает воду в охладитель продувочной воды, где она нагревается за счет теплоты продувочной воды. Затем сырая вода подогревается до 20–30 °C в пароводяном подогревателе сырой воды и направляется на химводоочистку. Химически очищенная вода направляется в охладитель деаэрированной воды и подогревается до определенной температуры. Дальнейший подогрев химически очищенной воды осуществляется в подогревателе паром. Перед поступлением в головку деаэратора часть химически очищенной воды проходит через охладитель выпара деаэратора.

Подогрев сетевой воды производится паром в последовательно включенных двух сетевых подогревателях. Конденсат от всех подогревателей направляется в головку деаэратора, в которую также поступает конденсат, возвращаемый внешними потребителями пара.

Подогрев воды в атмосферном деаэраторе производится паром от котлов и паром из расширителя непрерывной продувки, в котором котловая вода частично испаряется вследствие снижения давления. Продувочная вода после использования в охладителе непрерывной продувки сбрасывается в продувочный колодец (барботер).

Деаэрированная вода с температурой около 104 °С питательным насосом подается в паровые котлы. Подпиточная вода для системы теплоснабжения забирается из того же деаэратора, охлаждаясь в охладителе подпиточной воды до 70 °С перед поступлением к подпиточному насосу. Использование общего деаэратора для приготовления питательной и подпиточной воды возможно только для закрытых систем теплоснабжения ввиду малого расхода подпиточной воды в них. В открытых системах теплоснабжения расход подпиточной воды значителен, поэтому в котельной следует устанавливать два деаэратора: один для приготовления питательной воды, другой – подпиточной воды. В котельных с паровыми котлами, как правило, устанавливаются деаэраторы атмосферного типа.

Для технологических потребителей, использующих пар более низкого давления по сравнению с вырабатываемым котлоагрегатами, и для подогревателей собственных нужд в тепловых схемах котельных предусматривается редукционная установка для снижения давления пара (РУ) или редукционно-охладительная установка для снижения давления и температуры пара (РОУ).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)