|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Удаление примесей воды осаждением. Закономерности процесса. Кривые осаждаемостиТеоретические основы осаждения взвеси Осаждение взвешенных частиц происходит под действием силы тяжести. Современные конструкции отстойников, применяемые для осветления воды, являются проточными, так как осаждение взвеси в них происходит при непрерывном движении воды от входа к выходу. Поэтому скорости движения воды в отстойниках должны быть малы; они измеряются десятыми долями мм/с в вертикальных отстойниках и несколькими мм/с — в горизонтальных, тонкослойных и радиальных. При таких малых скоростях поток почти полностью теряет свою так называемую транспортирующую способность, обусловленную интенсивным турбулентным перемешиванием. Эти законы хорошо изучены применительно к явлению осаждения зернистой агрега-тивно устойчивой взвеси, частицы которой в процессе осаждения не слипаются друг с другом, не изменяют своих форм и размеров(первичное грубое осветление мутных вод). Осаждение неустойчивой взвеси, способной агломерироваться, слипаться в процессе осаждения, изучено в меньшей степени(типа при коагуляции). Седиментация зернистой взвеси подчиняется более простым закономерностям, чем неустойчивой взвеси, но эти же закономерности с определенными допущениями применяют для расчета осаждения и неустойчивой взвеси. Законом Стокса: Этот закон определяет величину силы сопротивления, которую испытывает частица при своем падении в жидкости; сила сопротивления изменяется пропорционально скорости, т. е. по линейному закону. Закон Стокса, как показывает опыт, справедлив для частиц очень малого размера, осаждающихся с малой скоростью (ламинарный режим), когда на сопротивление движению оказывают влияние только силы вязкости. С увеличением размера и скорости осаждения частиц линейный закон нарушается. Это вызывается возникновением турбулентности при обтекании движущейся частицы жидкостью, когда помимо вязкости на движение частицы начинают оказывать влияние инерационные силы. Скорость осаждения при температуре воды 10°С называют гидравлической крупностью частицы. Этот параметр используют для расчета отстойников, так как в этом случае важно знать скорость осаждения частиц, а не их размеры. Гидравлическую крупность частиц взвеси находят экспериментально, определяя относительное количество взвеси, выпавшей за определенный промежуток времени на дно цилиндра, заполненного испытуемой водой на высоту h. Природная взвесь водоемов, так же как и скоагулированная взвесь, состоит из частиц различного размера. Их гидравлическая крупность изменяется в широких пределах. Такая взвесь называется полидисперсной. Представление об осаждении полидисперсной взвеси дают кривые выпадения взвеси приведенные на рис. 8.3, б и 8.4, полученные опытным путем. Экспериментальная кривая выпадения взвеси позволяет найти процентное содержание различных ее фракций, т. е. фракций с различной гидравлической крупностью. Рис. 8.4. Графики седиментации зернистой полидисперсной взвеси при различной высоте осаждения (а) и совмещенная кривая осаждения (б) Пользуясь кривой выпадения, можно определить также среднюю гидравлическую крупность полидисперсной взвеси или среднюю скорость ее осаждения ucp: ucp.=ph/T. Величина uср может рассматриваться как гидравлическая крупность такой монодисперсной взвеси, для которой при той же высоте столба воды и равной продолжительности отстаивания получены одинаковые значения величины р. На практике определяют не среднюю скорость осаждения полидисперсной взвеси, а некоторую фиктивную скорость: uф=uср/р обычно называемую процентной скоростью осаждения. Величина и хотя и имеет размерность скорости, но не является физической скоростью осаждения частиц взвеси. Из изложенного видно, что указанный метод определения гидравлической крупности фракций взвеси и ее средней скорости осаждения можно использовать только для устойчивой зернистой взвеси и нельзя для коагулированной, неустойчивой взвеси, поскольку вследствие коагуляции частиц фракционный состав последней изменяется в процессе седиментации. Тем не менее кривые выпадения взвеси используют для расчета отстойников, так как они позволяют определить необходимую продолжительность пребывания воды в них по заданному эффекту осаждения или эффекту осветления воды. Это применимо как к осаждению устойчивой взвеси, так и не устойчивой, коагулированной взвеси. Технологическое моделирование процесса осаждения Технологическое моделирование процесса осаждения заключается в определении в лабораторных условиях расчетных параметров отстойников: скорости осаждения взвеси и продолжительности пребывания воды в отстойнике, обеспечивающей заданный эффект ее осветления. Методика моделирования основана на подобии кривых выпадения взвеси, получаемых при различных высотах столба исследуемой воды. Благодаря подобию кривых выпадения взвеси оказывается возможным моделировать этот процесс в цилиндрах с небольшой высотой столба воды. При этом время, в течение которого достигается определенный эффект осаждения, значительно уменьшается по сравнению с временем осаждения в отстойниках. Это позволяет быстро определить необходимые параметры для расчета отстойников. Одинаковый эффект осаждения монодисперсной взвеси с определенной гидравлической крупностью частиц достигается при равных отношениях T/h. Это справедливо и для полидисперсной зернистой взвеси. Т – время осаждения, h-высота столба жидкости. На рис. 8.4, а представлено семейство кривых выпадения полидисперсной зернистой взвеси. Каждая кривая получена при различных значениях высоты столба воды: кривые отличаются друг от друга только формой. Одинаковый эффект осаждения достигается при различной продолжительности отстаивания, но все кривые подобны между собой. Если изменить масштаб оси абсцисс (масштаб времени) и отложить по этой оси вместо значений времени значения T/h, то все кривые совместятся в одну (рис. 8.4,б). Это обстоятельство дает весьма простое правило пересчета времени, необходимого для получения заданного эффекта осаждения по результатам технологического моделирования. Получив в лаборатории кривую выпадения взвеси в процессе исследования исходной воды при высоте столба воды h, определяем требуемый эффект осаждения р. Он может быть рассчитан по концентрации взвеси в исходной воде Со и концентрации взвеси в осветленной воде С, регламентируемой СНиПом и принимаемой равной 8... 15 мг/л: Р=(С0-С)/С0 По величине р с помощью кривой выпадения взвеси определяем продолжительность осаждения Т 1, а затем расчетную продолжительность пребывания воды в отстойнике Тр из соотношения Тр/Т1=hр/h1 (1) Так как из условия подобия Tp/hp = T1/h1 =const при р — const здесь hp и Tр — соответственно расчетная высота зоны осаждения и продолжительность пребывания воды в проектируемом отстойнике. Формула (1) показывает, что при осаждении устойчивой взвеси продолжительность пребывания воды в отстойнике во столько раз больше продолжительности осаждения в цилиндре, во сколько высота зоны осаждения больше высоты слоя воды в цилиндре. При осаждении неустойчивой коагулирующей взвеси для расчета отстойников следует пользоваться выражением Tp/T1=(hp/h1)^n где n=0,2 - 0,5 — эмпирическая величина. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |