|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Удаление из воды марганца. Основные методы и установкиК настоящему времени разработаны и внедрены в практику различные методы очистки воды от марганца. С пособы очистки воды от марганца: 1. увеличение окислительно-восстановительного потенциала среды путем применения сильных окислителей без корректирования значения рН воды, 2. Повышение значения рН воды при недостаточном окислительно-восстановительном потенциале в случае использования слабых окислителей; 3. Совместное применение более сильного окислителя и повышение значения рН воды. Многие из них основаны на окислении присутствующего воде иона марганца (II) до марганца ( III ) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород- или натрий-катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами. Методы деманганации: 1. Безреагентные(глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых ос-ветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс») и реагентные (окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода, с использованием щелочных реагентов); 2. окислительные, сорбционные, ионообменные и биохимические. Удаление марганца методом глубокой аэрации с последующим фильтрованием предусмаривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8... 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг О2/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды. Удаление марганца из подземных вод может быть достигнуто в пласте при условии достаточно высокого значения рН. При введении в подземный поток воды, содержащей растворенный кислород, или воздуха, технического кислорода достигается окисление железа (II) и марганца(II), их соосаждение и задержание в порах водовмещающих пород. На процесс деманганации и деферизации воды по этому методу существенное влияние оказывают железо- и марганец-бактерии. Метод экономичный, относительно простой, однако, не всегда обеспечивающий надлежащую глубину деманганации воды. Считается целесообразным его использование при содержании марганца в подземной воде до 0,5 мг/л и высоком рН. Наиболее эффективным и технологически простым методом удаления марганца из вод поверхностных и подземных источников в настоящее время является обработка их перманганатом калия. Этот метод может быть применен на очистных комплексах любой производительности при любом качестве исходной воды; существенного изменения технологической схемы при этом не происходит. Использование катализаторов окисления марганца. Установлено, что предварительно осажденные на поверхности зерен фильтрующей загрузки оксиды марганца оказывают каталитическое влияние на процесс окисления иона марганца(П) растворенным в воде кислородом. При фильтровании аэрированной и подщелаченной (при низких (рН) воды, содержащей марганец, через песчаную загрузку по прошествии некоторого времени на поверхности зерен песка образуется слой Мn(ОН)4, который адсорбирует положительно заряженные ионы марганца (II). Это фильтрование ч/з «черный песок». Для этого обычный кварцевый песок крупностью 0,5... 1,2 мм обрабатывают последовательно 0,5%-ным раствором хлорида марганца и перманганата калия. В практике водоподготовки за рубежом в качестве катализатора окисления марганца кислородом воздуха или хлором получили распространение соли меди, медно-никелевые сплавы. Деманганация воды перманганатом калия. Основана на его способности окислять марганец (II) с образованием малорастворимого оксида марганца: ЗМп2+ + 2МnО4- + 2Н2О → 5MnO2↓ + 4Н+ При обработке воды перманганатом калия снижение привкусов и запахов происходит также вследствие частичной сорбции органических соединений образующимся мелкодисперсным хлопьевидным осадком гидроксида марганца. Применение перманганата калия дает возможность удалить из воды как марганец, так и железо независимо от форм их содержания в воде. Таким образом, перманганат калия, оказывая совокупное действие как окислителя, сорбента и вспомогательного средства коагуляции, является высокоэффективным реагентом для очистки воды от целого ряда загрязнений, в том числе и от марганца. На фильтровальных комплексах очистки воды из поверхностных источников раствор перманганат калия вводится в воду до коагулирования в смеситель или на насосной станции I подъема. При удалении марганца из подземных вод для увеличения фильтроцикла одновременно с раствором КМпО4 в обрабатываемую воду рекомендуется вводить активированную кремнекислоту в количестве 3...4 мг/л или флокулянт К-4. В этом случае укрупняются хлопья образующихся при окислении соединений марганца (IV), которые медленнее проникают в фильтрующую загрузку. Деманганация воды фильтрованием через модифицированную загрузку. Метод фильтрования аэрированной воды через загрузку, обработанную оксидами марганца, имеет недостаток, заключающийся в постепенном измельчении частиц, образующих покрытие зерен загрузки, и проскоке их в фильтрат. Другим недостатком деманганации фильтрованием через «черный песок» является значительный расход перманганата калия. Для исключения указанных недостатков был запатентован метод деманганации воды фильтрованием через модифицированную загрузку, приготавливаемую последовательным пропуском снизу вверх через кварцевый песок растворов железного купороса и перманганата калия, что позволяет достичь экономии последнего. Для закрепления образующей пленки из гидроксида железа и оксида марганца на зернах фильтрующей загрузки последнюю затем дополнительно обрабатывают тринатрийфосфатом или сульфитом натрия. Обрабатываемая вода фильтруется сверху вниз со скоростью 8... 10 м/ч. Очистка воды от марганца с использованием сильных окислителей. Скорость окисления ионов марганца (II) хлором, озоном, оксидом хлора зависит от величины рН среды. Хлор — сильный окислитель, однако эффект окисления им марганца может быть достаточно полным при значениях рН=8...8,5, что чаще всего требует подщелачивания воды. Эффект окисления хлором был намного ниже эффекта окисления кислородом воздуха в присутствии катализатора. Окисление марганца (II) озоном или оксидом хлора (IV) при рН=6,5...7,0 завершается в течение 10...15 мин. Слабый окислитель (кислород) в присутствии более сильного (хлора) активизируется. Это позволило разработать технологию деманганации воды, сущность которой сводится к глубокой аэрации воды, что влечет за собой повышение рН, обогащение воды кислородом воздуха, окисление железа(II) с образованием гидроксида. Затем в «водяную подушку» фильтра вводится хлор, воздействующий как окислитель и как катализатор окислительного действия растворенного кислорода. В результате в поровом пространстве фильтрующей загрузки формируется гидроксид железа (III), на поверхности которого адсорбируется, а затем окисляется марганец(II). Образующийся оксид марганца (IV) также катализирует процесс окисления марганца(II). Процесс деманганации воды зависит от ее температуры, РН окисляемости, присутствия силикатов, соотношения Fe(II)/Mn(II). Очистку вод, содержащих одновременно большое количество железа(II) и марганца(II), предлагается производить в две стадии (рис. 17.8): на первой осуществляется окисление железа(II) и выделение его из воды, на второй — окисление марганца(II) озоном, коагулирование, отстаивание и фильтрование. Очевидно, что известная громоздкость этой технологической схемы может быть оправдана лишь для водопроводов большой производительности, в основном при заборе воды из поверхностных источников. Несмотря на свою высокую эффективность, озон используют редко из-за высокой стоимости сложности эксплуатации озонаторных установок. Оксид хлора СlO2 также является сильным окислителем, однако, использование этого реагента затруднено из-за необходимости применения сложных в строительстве и эксплуатации установок, что особенно невыгодно на сооружениях очистки подземных вод небольшой производительности, которые составляют большинство. Удаление марганца(П) и железа (II) из воды методом ионного обмена. Это происходит как при натрий-, так и при водород-катионировании при фильтровании воды через катионитовую загрузку в ходе умягчения. Метод целесообразно применять при необходимости одновременного глубокого умягчения воды и освобождения ее от железа(II) и марганца (II). Биохимический метод удаления марганца. Заключается в высевании на зернах загрузки фильтра марганцепотребляющих бактерий и последующем фильтровании обрабатываемой воды. Эти бактерии поглощают марганец из воды в процессе жизнедеятельности, а отмирая, образуют на зернах песка пористую массу, содержащую большое количество оксида марганца, служащего катализатором окисления марганца (II). При скорости фильтрования до 22 м/ч фильтры полностью удаляют из воды марганец. Исследования биологических и биохимических методов очистки воды от марганца продолжаются. Предложен метод удаления марганца на биофильтрах и скорых обычных фильтрах. Д ля деманганации подземных вод наибольший интерес представляют: метод сорбции на гидроксиде железа(III), фильтрование через модифицированною загрузку и биохимический метод. 43. Общие вопросы проектирования водоочистных комплексов. Компоновочные решения. Вспомогательные помещения. Разработка генеральных планов. Основы выбора технологической схемы, сооружений и реагентов. Полный расход воды, поступающей на комплекс водоподготовки Qn, определяют с учетом расхода воды на его собственные нужды (приготовление пульпы, растворов и суспензий реагентов, продувка осветлителей или отстойников, удаление пены из флотаторов, промывка фильтровальных сооружений и резервуаров фильтрованной воды и др.) и дополнительного расхода воды на восполнение противопожарного запаса Qдon. Следовательно, полный расход воды, поступающей на водоочистной комплекс, будет равен Qп==аQмакс.сут. + Qдоп., где a — коэффициент, с помощью которого определяют расход воды на собственные нужды комплекса (для комплексов осветления и обесцвечивания, обезжелезивания, сорбционного обесфторивания при обороте промывной воды—1,03... 1,04; без повторного использования — 1,1... 1,14; для установок умягчения воды — 1,2... 1,3). Дополнительный расход воды на восполнение противопожарного запаса равен Q=3,6nqпожTпожTвос., где п — число одновременных пожаров; qnom — норма расхода воды при пожаре по СНиПу, л/с; Тпож=3 — расчетная продолжительность пожара, ч; Твос — период восстановления пожарного запаса, ч (для городов и предприятий категории А, Б, В — 24 ч, для предприятий категорий Г, Д — 36 ч, для сельских населенных пунктов — 72 ч). При проектировании водоочистных комплексов их коммуникации необходимо рассчитывать на возможность пропуска расхода воды на 30% больше расчетного, руководствуясь соображениями, интенсификации или реконструкции водоочистных сооружений. Состав водоочистных сооружений зависит от качества воды в источнике водоснабжения, требований, предъявляемых к обработанной воде, которые обусловлены регламентами потребителя, и от производительности установки. При подготовке воды питьевого качества состав водоочистных сооружений назначается по СНиПу, а при подготовке воды для технологических нужд — в соответствии с требованиями технологии. Технологические схемы составлены, исходя из оптимальных режимов эксплуатации отдельных водоочистных сооружений и с учетом технико-экономических показателей их работы. Высотная схема и планировка водоочистных сооружений. На крупных водоочистных комплексах обрабатываемая вода от сооружения к сооружению передается самотеком. Поэтому важно знать взаимное высотное расположение отдельных элементов технологической схемы. Это достигается построением высотной схемы (рис. 18.1) продольного профиля по воде в произвольном масштабе, на котором показывают все основные и вспомогательные сооружения и аппараты и проставляют отметки уровней воды в каждом сооружении и отметки дна сооружений. При составлении высотной схемы необходимо обеспечить условия самотечного движения воды от контактной камеры или смесителя до резервуара чистой воды при одновременном соблюдении требований удобства эксплуатации. Для этого прежде всего необходимо знать максимально возможные потери напора во всех водоочистных сооружениях технологической схемы, потери напора в коммуникациях между сооружениями и потери напора в измерительной аппаратуре(по СНиПу). При проектировании высотной схемы максимальную отметку уровня воды в резервуаре чистой воды назначают на 0,25......0,5 м выше поверхности земли и принимают как исходную минимальную. Далее путем последовательного суммирования потерь напора определяют отметки уровней воды в остальных сооружениях. Помимо профиля по воде при составлении высотной схемы необходимо определить высоту отдельных сооружений и отметки их дна по отношению к поверхности земли. При привязке очистных сооружений и проектировании высотной схемы необходимо учитывать рельеф площадки очистных сооружений, глубину залегания грунтовых вод, максимальный уровень воды в водоеме в период паводка, возможность самотечного отвода сточных вод и осадков с очистных сооружений, условия производства строительно-монтажных работ и их объем, условия работы насосов насосной станции II подъема. Отметки днищ "водоочистных сооружений должны назначаться с соблюдением условия минимального объема земляных и бетонных работ и наиболее благоприятных условий производства работ. На территории водоочистных комплексов, т. е. в санитарной зоне строгого режима, помимо основных технологических сооружений размещают все вспомогательные помещения (склады реагентов и фильтрующих материалов, мастерские, лаборатории, диспетчерские и др.). Склады реагентов, кроме хлора и аммиака, должны располагаться вплотную к реагентному цеху, где находятся аппараты для приготовления их растворов и суспензии. Площадь складов реагентов рассчитывают на хранение 15... 30-дневного запаса в зависимости от продолжительности паводка и местных условий их доставки. В зависимости от вида реагента и производительности комплекса предусматривают его сухое или мокрое хранение в виде концентрированных растворов или продуктов, залитых водой. Хранение реагентов в сухом виде осуществляют в закрытых складах навалом или в таре. Фторсодержащие реагенты и полиакриламид хранят в таре. На крупных водоочистных комплексах раствор коагулянта концентрацией 15... 20% хранят в баках-хранилищах без перемешивания. Количество баков должно быть не менее четырех. При числе баков до десяти следует предусматривать один резервный. При сухом хранении извести предусматривают дробилки и известегасилки, при мокром хранении — резервуары-хранилища и устройства для отбора, транспортировки теста и его гидравлического или механического перемешивания при приготовлении известкового молока. Проектирование складов аммиака и хлора, а также складов для хранения кислот должно производиться согласно Санитарным правилам проектирования, оборудования и содержания складов для хранения сильнодействующих ядовитых веществ. На крупных водоочистных комплексах предусматривают песковое хозяйство для хранения, сортировки, промывки и транспортирования материалов, необходимых для периодической догрузки и перегрузки фильтровальных аппаратов. Загрузку фильтрующим материалом фильтров следует производить с помощью песковых или водоструйных насосов при скорости движения пульпы 1,2... 2 м/с. Для надежной организации работы водоочистного комплекса в его составе необходимо предусматривать лаборатории, мастерские и другие вспомогательные помещения согласно СНиПу. Диспетчерский пункт цеха водоочистки обычно устраивают совмещенным с пунктом управления насосными станциями I и II подъема. Основополагающими при решении генплана водоочистного комплекса помимо географических, топографических и геологических условий являются его производительность и состав водоочистных сооружений. На генплане показывают блок основных водоочистных сооружений, служебный корпус, реагентное хозяйство, башню промывной воды, сооружения обработки осадка, НС II подъема, хлораторную со складом хлора, резервуары чистой воды, котельную, место песковой площадки. Компактное взаимное расположение отдельных водоочистных сооружений, вспомогательных помещений и оборудования на генплане комплекса должно предусматривать минимальные капиталовложения в строительство, обеспечивать максимальные удобства и экономичность эксплуатации, минимальную протяженность трубопроводов и дорожных покрытий между ними, удобство производства ремонтных работ, надежность и бесперебойность работы комплекса, возможность планомерного расширения при росте водопотребления. На рациональное решение генерального плана водоочистного комплекса доминирующее влияние оказывает рельеф местности. Так, в целях уменьшения объема земляных работ по выемке грунта и обсыпке отдельных сооружений рекомендуется располагать в повышенных местах сооружения с высокими отметками заложения фундамента, а с малыми — в пониженных. Все основные и вспомогательные сооружения желательно располагать в виде единого комплекса, образуемого трех-, двух-, и одноэтажными зданиями. При компоновке сооружений большой производительности (более 100 тыс. м3/сут) предусматривают отдельные здания для реагентного хозяйства входных устройств, сооружений предварительной обработки воды и фильтров и т. п. с разрывами между ними порядка 20 м, соединяемых галереями с основным зданием. При подаче до 5 тыс. м3/сут основные сооружения, реагентное хозяйство, служебные помещения и НС II подъема размещают в одном блоке. Во всех рассмотренных случаях хлораторная совмещена со складом и находится в отдельно стоящем здании; сооружения оборота промывной воды и сооружения обработки осадка размещены в пониженной части территории: промывка фильтров от промывной башни. При производительности 50 тыс. м3/сут и более служебные помещения и реагентное хозяйство размещают в самостоятельных корпусах, соединяемых гелереями с основным корпусом водоочистных сооружений. Отвод промывных вод и осадка обеспечиваются самотеком. В составе сооружений повторного использования промывной воды помимо резервуара-усреднителя предусматривается песколовка и насосы возврата осветленной воды и перекачки осадка. В составе сооружений обработки осадка — осветлителей (отстойников) предусмотрены резервуар приема осадка, осадкоуплотнитель с устройством медленного перемешивания, емкость сгущенного осадка и его механического обезвоживания, насосное отделение. Сооружение открытых отстойников и осветлителей вне зданий возможно в климатических регионах, где толщина образующегося на поверхности воды зимой льда не превышает 75 мм. Расположение вне зданий осветлительных и катионитовых фильтров допускается при условии, что в течение фильтроцикла на поверхности воды образуется слой льда толщиной не более 15 мм. Галереи трубопроводов необходимо утеплять. Открытые сооружения возможно применять при кондиционировании подземных вод с температурой не ниже +5°С, если средняя температура воздуха не ниже —5°С и наиболее холодной пятидневки не ниже —17 °С. На генеральный план водоочистного комплекса наносят все технологические, обслуживающие и подсобные сооружения, перечисленные выше, и кроме того, понизительную электроподстанцию, материальный склад, песковое хозяйство, котельную, мастерские, проходную. Хлораторную, совмещенную со складом хлора, размещают в наиболее низкой части территории водоочистного комплекса на расстоянии не менее 30 м от зданий. Если сооружения размещены в здании, то на генплане показывается само здание с примыкающими к нему коммуникациями. Территории, где размещены водоочистные сооружения, ограждается с соблюдением требований СНиПа. Надежность работы водоочистного комплекса обеспечивается дублированием отдельных технологических сооружений и устройством обводных линий, позволяющих отключать то или иное сооружение или блок, пропуская воду в обход. Для комплексов с подачей 10тыс м3/сут возможно отключение половины технологических сооружений, а для комплексов большей мощности — до четверти. Кроме того, необходимо предусматривать обводную линию от НС I подъема непосредственно в резервуары чистой воды. На генплане должны быть показаны с указанием диаметров трубопроводы исходной и фильтрованной воды; трубопроводы подачи, отвода и оборота промывной воды; промышленная и хозяйственно-бытовая канализация, хозяйственно-противопожарный водопровод, отводной трубопровод, теплосеть, кабели и другие коммуникации. При решении генплана водоочистного комплекса необходимо предусматривать возможность его расширения на расчетный период. Каналы и трубы обвязки сооружений должны быть рассчитаны с запасом на возможность пропуска воды после реконструкции отдельных водоочистных сооружений или целых блоков. При проектировании генерального плана водоочистного комплекса необходимо предусматривать минимальную протяженность путей перемещения реагентов; максимально возможную механизацию погрузочно-разгрузочных работ и смены загрузки фильтровальных аппаратов; маневренность эксплуатации как отдельных технологических сооружений, так и целых блоков. Планировка территории комплекса должна обеспечивать отвод атмосферных осадков от всех технологических сооружений, отдельных; зданий и с площадки последних. На территории комплекса помимо дорог предусматривают устройство тротуаров и озеленение. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |