АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Геометрии и механики

Читайте также:
  1. ГРАНИЦЫ ПРИМЕНИМОСТИ КЛАССИЧЕСКОЙ МЕХАНИКИ
  2. Основные представления квантовой механики
  3. Предмет начертательной геометрии. Способы проецирования
  4. Система измерения геометрии кузова
  5. Система измерения геометрии кузова Blackhawk Shark
  6. Система измерения геометрии кузова SIVER DATA
  7. Служба автоматики и телемеханики
  8. Устройства телемеханики (ГОСТ 2.752-71)
  9. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Пусть и , где -угол, образованный с положительным направлением оси ОХ касательной к кривой в точке с абсциссой .

Уравнение касательной к кривой в точке имеет вид:

, где -производная при .

Нормалью к кривой называется прямая, перпендикулярная касательной и проходящая через точку касания.

Уравнение нормали имеет вид

.

Угол между двумя кривыми и в точке их пересечения называется угол между касательными к этим кривым в точке . Этот угол находится по формуле

.

8. Производные высших порядков

Если есть производная от функции , то производная от называется второй производной, или производной второго порядка и обозначается , или , или .

Аналогично определяются производные любого порядка:производная третьего порядка ; производная n-го порядка:

.

Для произведения двух функций можно получить производную любого n-го порядка, пользуясь формулой Лейбница:

Пример:

1)

9. Вторая производная от неявной функции

-уравнение определяет , как неявную функцию от х.

а) определим ;

б) продифференцируем по х левую и правую части равенства ,

причем, дифференцируя функцию по переменной х, помним, что есть функция от х:

;

в) заменяя через , получим: и т.д.

Пример:

10. Производные от функций, заданных параметрически

Пример:

Найти если .

11. Дифференциалы первого и высших порядков

Дифференциалом первого порядка функции называется главная, линейная относительно аргумента часть. Дифференциалом аргумента называется приращение аргумента: .

Дифференциал функции равен произведению ее производной на дифференциал аргумента:

.

Основные свойства дифференциала:

где .

Если приращение аргумента мало по абсолютной величине, то и .

Таким образом, дифференциал функции может применяться для приближенных вычислений.

Дифференциалом второго порядка функции называется дифференциал от дифференциала первого порядка: .

Аналогично: .

.

Если и - независимая переменная, то дифференциалы высших порядков вычисляются по формулам

.

Пример.

Найти дифференциалы первого и второго порядков функции


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)