|
|||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сравнение частот эмпирического и теоретического распределения при помощи критериев согласияВычисление теоретических частот происходит из той или иной гипотезы о предлагаемом законе распределения. Следовательно, после расчета теоретических частот возникает необходимость проверки выдвинутой гипотезы о соответствии или несоответствии того или иного теоретического закона распределения, принятого в качестве математической модели для эмпирического распределения. Проверка гипотезы строится на основе сопоставления частот эмпирического и теоретического распределений и суждения о случайности или существенности их расхождений. При этом исходят из того, что если расхождения между эмпирическими и теоретическими частотами можно считать случайными, то гипотеза о том, что принятая теоретическое распределение соответствует данному эмпирическому, не отвергается. Критерий Пирсона «хи-квадрат»
Для оценки случайности или существенности расхождений между частотами эмпирического и теоретического распределения в статистике используют ряд показателей является критерий где m и m/ - соответственно эмпирические и теоретические частоты. если учесть, что
Пирсоном найдено распределение величины Если вероятность P( При этом определенная по таблицам вероятность наблюдаемого значения Под которым понимается число групп, частоты которых можно принимать значения, не связанные друг с другом. Практически для вариационного ряда число степеней свободы определяется как число групп в рассматриваемом ряду минус число ограничивающих эти два ряда связей. Число ограничивающих связей, в свою очередь, определяется числом сведений эмпирического ряда, используемых при исчислении теоретических частот. Так, например, в случае выравнивания ряда у кривой нормального распределения между эмпирическим и теоретическим распределением три связи 1 динаковая сумма частот 2 3 по этому при выравнивании по кривой нормального распределения число степеней свободы (к) определяется как n-3, где n число групп в ряду. При выравнивании по кривой Пуассона k= n-2, так как в этом случае для нахождения теоретических частот учитывались две ограничивающие связи: 1 2 Для оценки существенности наблюдаемых значений 1 тип По таблице отыскивается вероятность наступления наблюдаемого значения Если вероятность близка к 0 (как правило, <0,05), расхождение между эмпирическими и теоретическими частотами считают существенными, а гипотезу не приемлемой для данного распределения. 2тип По таблице другого типа определяется предельное верхнее значение «хи – квадрата» (критическое значение) при данном числе степеней свободы и заданном уровне значимости. Затем наблюдаемое значение «хи- квадрат» сравнивают с табличным (критическим). Если фактическое (хи- квдрат) < табличного
то при заданном уровне значимости расхождения между эмпирическими и теоретическими частотами считают случайными, а гипотезу о принятом законе распределения приемлемой. Под условием значимости в данном случае понимают вероятность, с которой может быть опровергнута гипотеза о том или ином законе распределения. Чем меньше уровень значимости, тем < вероятность не принять гипотезу. Обычно уровень значимости P( вероятности (уровню значимости) при определенном числе степеней свободы величина Если Пример:
Определяем число степеней свободы К= n-3; n=8-3=5 Пользуясь таблицами второго типа, определяем, что при к=5 и уровне значимости Пользуясь критерием «хи-квадрат» для оценки степени соотношения эмпирических и теоретических распределений, следует иметь в виду, что он будет эффективны, если общий объем совокупности >50 и число единиц в каждом классе не менее 5. Кроме того, следует учитывать, что данный критерий применим для сопоставления частот, т.е. абсолютных показателей. Если же распределение дано в частях, т.е. в относительных показателя, то в формуле перед знаком
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |