|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Шаг 1: Выбор данныхВыбор данных для циклического анализа — нетривиальная задача. Из-за природы анализа циклов различные данные (например, фьючерсы и спот-рынок, ближайшие контракты и непрерывные фьючерсы, дневные и недельные данные) будут приводить к разным результатам. В дополнение, анализ, выполненный на данных в 1000 точек, может значительно отличаться от анализа, использующего 5000 точек. Вот почему крайне важно, чтобы аналитик уделил достаточно внимания выбору подходящих данных, иначе весь анализ может привести к неправильным выводам. Этот первый шаг анализа циклов — выбор данных — может быть разбит на четыре различных этапа. a. Понимание природы данных. b. Выбор типа данных. c. Выбор длины отрезка данных. d. Выбор степени сжатия данных. Понимание природы данных. Природа данных в серии может подвергаться значительным изменениям с течением времени, и для аналитика важно хорошо понимать эти изменения. Превосходный пример такого рода изменений данных предоставляет рынок сырой нефти. Данные о ценах на сырую нефть известны с момента бурения первой нефтяной скважины в 1859 г. в Титусвилле, штат Пенсильвания. На протяжении XIX столетия сырая нефть перерабатывалась преимущественно в керосин для последующего его использования в осветительных лампах, а побочными продуктами производства керосина были смазоч- 580 ЧАСТЬ 3. осцилляторы и циклы ные вещества. После изобретения двигателя внутреннего сгорания главным продуктом переработки сырой нефти стал бензин. В результате поведение цен на сырую нефть до и после 1900 г. сильно отличалось. До наступления XX века и широкого распространения автомобилей сырая нефть использовалась в первую очередь для освещения. Поэтому цены на нее вели себя, скорее, как цены на хозяйственные товары, а не как цены на энергоноситель. Таким образом, хотя серии данных начинаются в 1859 г., скрытая за ними роль нефти в экономике изменилась вместе со столетием, и изменились циклы. Хотя подобные масштабные изменения природы данных проявляются только в случае очень долгосрочных циклов, следовало бы подчеркнуть, что структурные изменения в природе данных не связаны напрямую с длительными временными промежутками. Например, циклы цен на соевые бобы значительно изменились за последние 20 лет вследствие климатических и политических изменений. В 1970-х годах действия Эль-Ниньоса привели к массовой гибели рыбы, вызвав резкое сокращение поставок анчоусовых и резко взвинтив спрос на соевые бобы как заменитель белка. Однажды возникнув, такой сдвиг стал постоянным. Другим переломным изменением, начавшимся примерно в то же самое время, стала тенденция к росту производства сои в Южной Америке, изначально вызванная зерновым эмбарго против Советов, введенным президентом Картером. За последние 20 лет производство соевых бобов в Южной Америке более чем удвоилось, в то время как производство в США оставалось на прежнем уровне. Важность такой тенденции состоит в том, что сельскохозяйственные сезоны в Южной Америке являются зеркальным отражением сезонов в США: в южном полушарии сеют, когда у нас осень, и убирают урожай, когда у нас весна. Как результат отмеченных выше сдвигов в спросе и распределении производства, ценовые циклы соевых бобов существенно изменились за два последних десятилетия. Главное в том, что все используемые для анализа циклов данные должны быть относительно однородны. Если природа данных меняется, циклы с большой вероятностью тоже изменятся. Выбор типа данных. Тип выбранных данных должен отражать реальные изменения цен на рынке, а не аномалии, связанные с заменами контрактов или сглаживающими методами. Для фьючерсных трейдеров лучше всего использовать непрерывные фьючерсы, которые устраняют влияние замены одного контракта на другой. (Подробное объяснение непрерывных фьючерсов дано в гл. 12 и 19, там же обсуждаются и другие типы ценовых серий.) Тем не менее, следует заметить, что использование непрерывных фьючерсов иногда приводит к отрицательным значениям исторических цен для некоторых периодов. Если воз- ГЛАВА 16. анализ циклов фьючерсных рынков 581 никают отрицательные цены, к данным следует прибавить константу, достаточную для того, чтобы устранить отрицательные величины (значение добавленной константы никак не повлияет на анализ), что позволит трансформировать данные в логарифмическую форму — общий шаг в анализе циклов, который будет описан позже. Наименее желательный тип данных для анализа циклов — это графики ближайших фьючерсных контрактов, которые могут привести к сильным искажениям из-за разрывов цен при замене контракта. Серии цен наличного товара (спот-рынок) иногда тоже могут быть использованы для анализа циклов, исключая случай чрезвычайно высоких процентных ставок. (Процентные ставки влияют на стоимость поставки и на уровень цен и будут, таким образом, приводить к большой разнице между наличной и фьючерсной ценами, как это было в конце 1970-х и начале 1980-х годов.) «Бессрочные» фьючерсы не настолько проблематичны, как ближайшие фьючерсные контракты, но поскольку такой подход создает серии, которые никогда не существовали, он определенно представляет собой менее желательную альтернативу непрерывным фьючерсам, которые, как объясняется в гл. 12, изменяются параллельно реальным движениям цен на рынке. Выбор длины отрезка данных. Большинство методов поиска циклов испытывает проблемы, связанные с недостатком или переизбытком данных. Если набор данных слишком мал, то аналитик просто не увидит достаточного количества повторений, чтобы обнаружить наличие цикла. Как правило, требуется по меньшей мере десять повторений цикла (лучше пятнадцать), чтобы статистически подтвердить его наличие. Следовательно, если кто-то ищет 100-дневный цикл, необходимо иметь данные за 1000 дней, чтобы его обнаружить. Практический минимум — это примерно 200 точек данных, независимо от длины отыскиваемых циклов, поскольку большинство математических алгоритмов не смогут правильно работать при меньшем количестве данных. В анализе циклов, однако, больше — не обязательно лучше. Слишком большое количество точек данных (например, более 5000), скорее всего, приведет к многочисленным смешениям фаз, и в результате статистические тесты пропустят некоторые важные циклы. Чаше всего нет необходимости использовать более чем 2000 точек данных и, более того, нежелательно использовать более чем 5000 (водораздел между отсутствием преимуществ и негативным влиянием лежит где-то посередине этого отрезка). Основываясь на опыте, можно рекомендовать, чтобы первичный анализ был проведен для 2000 точек данных, а второй, более точный, — примерно для 1000 точек с целью детального нахождения временных рамок циклов. Это с очевидностью означает, что в любом случае не следует искать циклы с периодом, большим чем 100 582 ЧАСТЬ 3. осцилляторы и циклы точек данных, поскольку циклы с более длинными периодами будут иметь менее десяти повторений при втором сканировании. Чтобы найти циклы с большими периодами, потребуется сжатие данных. Выбор степени сжатия данных. Обычно рыночные данные подытоживаются по временным периодам, таким как N-минутные (например, 5, 15, 30, 60 или 90-минутные), дневные, недельные, месячные, квартальные или годичные интервалы. В каждом случае все цены внутри временного периода сжимаются в одно значение — обычно среднее или последнее значение для данного интервала. В этом смысле каждой временной рамке соответствует определенная степень сжатия данных. Данные наименее сжаты в случае 5-минутных интервалов и сильнее всего при годичных интервалах. Сжатие сглаживает ценовые изменения внутри данного интервала, поскольку всему массиву ценовых «тиков» внутри интервала ставится в соответствие одно значение. В анализе циклов важно выбрать правильный уровень сжатия. Есть два основных правила при выборе правильного сжатия: если цикл повторяется более 250 раз на отрезке данных, используйте большее сжатие (например, возьмите дневные данные вместо часовых). С другой стороны, если цикл повторяется менее 15 раз, используйте меньшее сжатие (например, возьмите дневные данные вместо недельных). Палее следует обзор характеристик основных типов сжатия и возможных проблем, связанных с ними. 1. Внутридневные данные. Хотя циклы могут быть обнаружены 2. Дневные данные. Дневные данные — это лучшие данные для ГЛАВА 16. анализ циклов фьючерсных рынков 583 Основная сложность, связанная с анализом дневных данных, — это проблема выходных дней. Есть три основные возможности ее решения: (1) считать, что в выходные были торги с теми же результатами, что и в предшествующий им день; (2) интерполировать ценовые данные на выходные дни; (3) игнорировать выходные дни. Хотя единственного правильного ответа не существует, мы предпочитаем, исходя из опыта, первое решение. 3. Недельные данные. После внутридневных данных неде-льные данные представляют собой наиболее проблематичную сте-пень сжатия, поскольку их период не совпадает с периодами лю-бых сезонных моделей. Проблема связана с тем, что изменения цен многих фьючерсных контрактов имеют сезонный характер. Поскольку месяц не равен четырем неделям, а год немного длин-нее, чем 52 недели, недельные данные «идут не в ногу» с сезон-ными изменениями. Основная ценность недельных данных заклю-чается в том, что они позволяют идентифицировать циклы, сли-шком длинные, чтобы их можно было найти, используя дневные данные. Один из возможных подходов — использовать недельный 4. Месячные данные. Вместе с дневными данными месячные данные представляют собой наилучшее сжатие для циклического анализа. У месячных данных нет проблем, связанных со случайны-ми флуктуациями, поскольку они сильно сглажены. Кроме этого, они прекрасно сочетаются с сезонными тенденциями во фьючер-сных данных. Месячные данные могут использоваться для оты-скания циклов от 5 месяцев до 350. (Верхний предел превышает максимальную длину цикла, равную одной десятой всего объема данных, о которой говорилось выше. Это менее жесткое условие возникает благодаря сглаженной природе месячных данных.) 5. Квартальные и годичные данные. В общем случае эти бо-лее долгосрочные виды сжатий не предоставляют достаточно ма-териала для анализа фьючерсных данных. Для некоторых рын-ков, однако, существуют данные по ценам наличного товара, продолжительности которых хватает для проведения подобного анализа. Обычно годичные данные дают возможность получить лучший результат, чем квартальные. В случае более долгосрочных сжатий аналитику приходится использовать комбинированные данные. Например, годичные цены на зерно доступны начиная с 1259 г. и являются комбинацией четырех отдельных серий: бри-танские цены на зерно до существования американских данных и три различных американских ценовых серии, отражающие изме- 584 ЧАСТЬ 3. осцилляторы и циклы нения в преобладании наиболее популярных сортов зерна (например, твердых сортов над мягкими). Для того чтобы «склеить» различные ценовые серии, необходимо, чтобы эти серии содержали перекрывающиеся ценовые данные не менее чем за 10 лет, форма которых более или менее совпадает. Затем полученную комбинированную серию умножают на коэффициент, подобранный так, чтобы ее последние значения совпадали с современными ценами. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |