АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Шаг 7: Проверка циклов на статистическую значимость

Читайте также:
  1. D) этот период состоит из 2- 3 мезоциклов восстановительного характера
  2. II проверка домашнего задания
  3. III. Проверка рекуперативной схемы
  4. А. Проверка исправности клапана вдоха
  5. Автоматическая проверка правописания
  6. Анализ эффективности термодинамических циклов ГТУ.
  7. Аудиторская проверка операций по счетам в банке.
  8. Аудиторская проверка расчетов с бюджетом по налогам.
  9. Б. Проверка правоспособности иностранной организации и полномочий ее представителя
  10. В чем состоит клиническая значимость недостаточности глкжозо-6-фосфат-дегидрогеназы?
  11. Вакуумные (до 100000 циклов)
  12. Виды нормативно-правовых актов, их значимость

Необходимость статистической проверки. Когда циклы найдены и из данных полностью удален тренд с помощью описанных методов, аналитику нужно оценить циклы, используя различные стандартные ста­тистические приемы. Это очень важно, так как визуально легко найти множество циклов там, где на самом деле их нет. Таким образом, не­обходимо использовать объективную статистическую проверку. В ана­лизе циклов наиболее часто используют три важных теста: тест Бартел-


598 ЧАСТЬ 3. осцилляторы и циклы

са, F-коэффициент и хи-квадрат. Из этих трех способов тест Бартелса предлагает наиболее разумный и надежный способ измерить статисти­ческую значимость цикла.

Общие соображения относительно интерпретации результатов статистической проверки. Следует сделать несколько важных ука­заний относительно интерпретации данных статистических тестов.

1. На все статистические тесты, используемые в анализе ци-клов, будет оказывать влияние присутствие тренда, что бу-дет приво­дить к недооценке статистическими тестами зна-чимости циклов в данных. Вот почему было необходимо полностью снять на­правленность данных на предыдущих этапах.

2. Уровень значимости, показанный этими тестами, будет за-висеть от числа повторений цикла в данных. Таким обра-зом, при ра­венстве всех других условий, циклы меньшей длины, которые по­вторятся в данных большее количество раз, будут, скорее все­го, иметь лучшие статистические ре-зультаты. Вообще говоря, циклы, которые повторяются ме-нее десяти раз в последователь­ности данных (частота мень-ше десяти), не будут, как правило, показывать высокую значимость при статистической проверке. Однако, следуя предложенным ранее советам, вы не будете ис­кать циклы, длина которых соответствует частотам, меньшим десяти.

3. В результате тестов аналитик получает статистические зна-чения, соответствующие вероятностям. Чем больше статис-тическая ве­личина, тем ниже вероятность того, что цикл слу-чаен и тем выше его статистическая значимость. Чтобы из-бежать недоразумений, аналитику следует проверить, вы-дает ли программное обеспе­чение, которым он пользуется при анализе циклов, результаты проверки как статистиче-ские величины, специфичные для дан­ного теста, или как вероятности. В первом случае вероятности следует искать в статистической таблице этого теста. Ранее было принято представлять результаты проверки как статистические
величины из-за сложности вероятностных расчетов. Однако бла­годаря громадному росту производительности процес-соров, се­годня компьютеры могут быстро вычислять веро-ятности напря­мую. Сегодня программное обеспечение для анализа циклов, как правило, вычисляет вероятности, которые проще интерпре­тировать, а не статистические ве-личины.

4. Вообще говоря, циклы с вероятностью больше чем 0,05 (5%) от­вергаются. (Вероятность 0,05 означает, что только в 5 случаях из 100 данный цикл мог бы оказаться случайным.)


ГЛАВА 16. анализ циклов фьючерсных рынков 599

Наилучшие циклы имеют вероятность 0,0001 (вероятность

cлучайности цик­ла равна 1 из 10 000) или менее.

 

5. Предупреждение: низкие вероятности, показанные статистичес­кими тестами, говорят только о том, что возможный цикл, ве­роятно, не случаен; они не гарантируют, что цикл, действитель­но, присутствует. Статистические тесты могут обнаружить «зна­чимый» цикл даже в совершенно случайном ряду чисел. Таким образом, статистические тесты следует рассматривать как на­правляющий принцип, а не как абсолютную истину, которой надо следовать, не задавая вопросов.

Наиболее важный статистический тест, применяемый в цикличес­ком анализе, — тест Бартелса — требует выполнения гармонического анализа. Эта процедура описывается ниже.

Гармонический анализ. Из-за огромного объема необходимых вы­числений гармонический анализ так же, как и спектральный анализ, тре­бует использования компьютеров и программного обеспечения. Гармо­нический анализ вписывает тригонометрические кривые в диаграмму средних значений колонок периодограммы. Например, на рис. 16.13 наложены друг на друга кривая, выведенная с использованием гармо­нического анализа, и диаграмма средних значений колонок, выведен­ная ранее из периодограммы годичных цен на кукурузу. Гармоничес­кий анализ может быть применен только после того, как определена длина возможных циклов. Вот почему было необходимо провести сна­чала спектральный анализ и определить длину этих циклов. Кривая, выведенная с помощью гармонического анализа, чаше всего использу­ется как основание для статистической проверки надежности цикла с помощью теста Бартелса, который является самым важным статистичес­ким тестом в анализе циклов. Вообще говоря, чем точнее совпадают гармоническая кривая и диаграмма средних для колонок периодограм­мы, тем выше статистическая надежность.

Тест Бартелса. Тест Бартелса измеряет, насколько точно совпадают ценовые серии и гармоническая кривая, выведенная для цикла данной тестируемой длины. Тест Бартелса сравнивает кривую цикла с каждым появлением цикла в данных, соотнося амплитуду каждого появления цикла со статистически ожидаемой амплитудой. Тест Бартелса измеря­ет как амплитуду (форму), так и фазу (время) цикла. Математическая мера истинности цикла будет наиболее высокой (т.е. вероятность того, что цикл случаен, оказывается самой низкой), когда есть стабильность и в амплитуде, и во времени. Тест Бартелса был разработан специаль­но для использования с данными, составляющими коррелированные ряды (когда каждое значение данных в точке зависит от значения дан-


600 ЧАСТЬ 3. осцилляторы и циклы

Рисунок 16.13.

ГАРМОНИЧЕСКАЯ КРИВАЯ, СООТВЕТСТВУЮЩАЯ СРЕДНИМ ЗНАЧЕНИЯМ КОЛОНОК ПЕРИОДОГРАММЫ

ных в предыдущих точках). По этой причине тест Бартелса хорошо под­ходит, в частности, для проверки ценовых данных, которые являются коррелированными рядами.

F-коэффициент. В общем случае в статистике F-коэффициент — это отношение двух дисперсий. Дисперсия — это квадрат стандартного отклонения, которое является мерой волатильности данных. Ряды дан­ных, где точки сильно разбросаны, будут иметь высокое стандартное отклонение и дисперсию. И наоборот, ряды данных, где точки распо­ложены близко к своим средним значениям, будут иметь низкое стан­дартное отклонение и дисперсию.

В циклическом анализе F-коэффициент — это отношение диспер­сии средних значений колонок периодограммы к дисперсии средних значений строк периодограммы. Если цикл такой длины в данных не присутствует, средние значения колонок периодограммы не будут де­монстрировать заметного разброса (в колонках не будет заметных пи­ков и впадин), как, например, было в случае средних значений колонок в периодограмме с восемью колонками для ежегодных данных по куку­рузе (рис. 16.9). Таким образом, не следовало бы ожидать, что диспер­сия средних значений колонок будет значительно больше, чем диспер-


ГЛАВА 16. анализ циклов фьючерсных рынков 601

сия средних значений строк. Это означает, что F-коэффициент не ока­зался бы существенно больше единицы. Если, с другой стороны, цикл данной длины присутствует в данных, дисперсия средних значений ко­лонок было бы значительно больше, чем дисперсия средних значений строк (предполагая, конечно, что из данных был удален тренд), и F-ко­эффициент был бы существенно больше единицы. Чем выше F-коэффи-ииент, тем меньше вероятность, что цикл может оказаться случайным. F-коэффициент представляет собой прекрасный индикатор, пока­зывающий, насколько вероятно, что цикл окажется прибыльным с точ­ки зрения торговли. Если тест Бартелса и хи-квадрат (обсуждаемый да­лее) выявляют значимость цикла, но у цикла низкий F-коэффициент, что иногда случается, его польза с точки зрения торговли вызывает подо­зрение. F-коэффициент особенно чувствителен к наличию тренда, по­скольку присутствие тренда в данных будет сильно повышать дисперсию средних для строк периодограммы, таким образом снижая F-коэффи­циент. Следовательно, если с данных не была полностью снята направ­ленность, F-тест может показать низкую значимость цикла, даже когда на самом деле цикл очень надежен. Поэтому очень важно полностью удалить тренд до перехода к этому этапу тестирования цикла.

Хи-квадрат. Тест хи-квадрат измеряет надежность фазы (времени) цик­ла, т.е. проверяет, обнаруживается ли у цикла тенденция достигать ми­нимумов и максимумов вовремя. В тесте хи-квадрат каждая фаза цикла (т.е. строки периодограммы) разбиваются на семь равных отрезков, или ячеек, с теоретическим пиком цикла, соответствующим центральной ячей­ке. Затем отмечается ячейка, в которой в действительности располагает­ся пик, и подсчитывается количество максимумов цикла, появляющихся в каждой ячейке. Если цикл стабилен, то наибольшее количество макси­мумов попадет в центральную ячейку и соседние с ней, при этом количе­ство максимумов будет снижаться при удалении ячеек от центра. Таким образом, будет наблюдаться высокий разброс (дисперсия) количества мак­симумов в ячейках. И напротив, если цикла нет, количество максимумов в ячейках будет распределено равномерно, и дисперсия количества мак­симумов в ячейках будет низкой. Если дисперсия количества максимумов в ячейках велика по сравнению с дисперсией, которую следовало бы ожидать при случайном распределении, хи-квадрат тест показывал бы значимость цикла, т.е. низкую вероятность того, что цикл случаен.

Резюме. Тест хи-квадрат измеряет надежность фазы цикла (его вре­мени); F-коэффициент измеряет надежность амплитуды цикла (его фор­мы); тест Бартелса измеряет надежность как фазы, так и амплитуды. Ре­альные циклы должны показывать свою значимость на всех трех стати­стических тестах, т.е. иметь вероятности случайности, меньшие чем 0,05 на каждом тесте.


602 ЧАСТЬ 3. осцилляторы и циклы

Таблица 16.2.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)