АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механика твёрдого тела

Читайте также:
  1. I семестр: Механика и молекулярная физика
  2. Биомеханика суставов
  3. ДЗ №2 (ИДЗ «Механика»)
  4. ДЗ №3 (ИДЗ «Механика»)
  5. ДОЛЖНОСТНАЯ ИНСТРУКЦИЯ МЕХАНИКА
  6. ДОЛЖНОСТНАЯ ИНСТРУКЦИЯ ЭЛЕКТРОМЕХАНИКА РАЙОНА КОНТАКТНОЙ СЕТИ.
  7. ДОЛЖНОСТНАЯ ИНСТРУКЦИЯ ЭЛЕКТРОМЕХАНИКА ТЯГОВОЙ ПОДСТАНЦИИ.
  8. Законах преуспевания – квантовая механика – правое и левое полушарие – квантовый цикл в психологии
  9. Квантовая Механика
  10. Лекция 10. Функциональная анатомия и биомеханика суставов и мышц туловища. (Швецов Э. В.)
  11. Механика
  12. Механика Конкурса.

Основное уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси –

,

где – момент силы, действующей на тело в течение времени dt; J – момент инерции тела; – угловая скорость; J – момент импульса.

Если момент силы и момент инерции постоянны, то это уравнение записывается в виде

.

В случае постоянного момента инерции

,

где - угловое ускорение.

Момент силы , действующей на тело, относительно оси вращения –

,

где – проекция силы на плоскость, перпендикулярную оси вращения; – плечо силы (кратчайшее расстояние от оси вращения до линии действия силы).

Момент инерции материальной точки –

,

где m – масса точки; r – расстояние от оси вращения до точки.

Момент инерции твёрдого тела –

,

где ri – расстояние от элемента массы Dmi до оси вращения.

В интегральной форме это выглядит так:

.

 

Моменты инерций некоторых тел правильной геометрической формы приведены в табл. 1.

Таблица 1

Тело Ось, относительно которой определяется момент инерции Формула момента инерции
Однородный тонкий стержень массой m и длиной   Проходит через центр тяжести стержня перпендикулярно ему Проходит через конец стержня перпендикулярно ему
Тонкое кольцо, обруч, труба радиусом R и массой m, распределённой по ободу Проходит через центр кольца, обруча, трубы, маховика перпендикулярно плоскости основаня      
Круглый однородный диск (цилиндр) радиусом R и массой m Проходит через центр диска перпендикулярно его плоскости    
Однородный шар массой m и радиусом R Проходит через центр шара  

Если тело однородно, т. е. его плотность ρ одинаково по всему объёму, то

и ,

где V – объём тела.

Теорема Штейнера. Момент инерции тела относительно произвольной оси равен

,

где – момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно заданной оси; m – масса тела; a – расстояние между осями.

Закон сохранения момента импульса – ,

где - момент импульса тела под номером i, входящего в состав системы.

Закон сохранения момента импульса для двух взаимодействующих тел –

,

где , , и - моменты инерции и угловые скорости тел до взаимодействия; , , и - те же величины после него.

Закон сохранения момента импульса для одного тела, момент инерции которого меняется, –

,

где и – начальный и конечный моменты инерции; и – начальная и конечная угловые скорости тела.

Работа постоянного момента силы M, действующего на вращающееся тело, –

,

где φ – угол поворота тела.

Мгновенная мощность, развиваемая при вращении тела – .

Кинетическая энергия вращающегося тела – .

Кинетическая энергия тела, катящегося по плоскости без скольжения, –

,

где – кинетическая энергия поступательного движения тела; – кинетическая энергия вращательного движения вокруг оси, проходящей через центр инерции.

Работа, совершаемая при вращении тела, и изменение его кинетической энергии связаны соотношением

.

Величины, характеризующие динамику вращательного движения, и формулы, описывающие это движение, аналогичны соответствующим величинам и формулам поступательного движения (см. табл. 2).

Таблица 2

Поступательное движение Вращательное движение Поступательное движение Вращательное движение
Основной закон динамики Работа и мощность  
Закон сохранения Кинетическая энергия
импульса   момента импульса
 
           

 

Относительное продольное растяжение (сжатие):

,

где – изменение длины тела при растяжении (сжатии); l – длина тела до деформации.

Относительное поперечное растяжение (сжатие):

,

где – изменение диаметра стержня при растяжении (сжатии); d – диаметр стержня.

Связь между относительным поперечным (растяжением) сжатием и относительным продольным растяжением (сжатием) ε –

,

где µ – коэффициент Пуассона.

Закон Гука для продольного растяжения (сжатия):

,

где Е – модуль Юнга.

Напряжение упругой деформации – ,

где F – растягивающая (сжимающая) сила; s – площадь поперечного сечения.

Потенциальная энергия упругорастянутого (сжатого) стержня –

,

где V – объём тела.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)