|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ответ: простота и наглядность представления чисел, простота алгоритмов реализации арифметических операцийРассмотрите пример записи дополнительного кода отрицательного числа -2002 для 16 разрядного компьютерного представления (учебник, стр. 105). В чем сущность использования дополнительного кода? Ответ: При n-разрядном представлении отрицательного числа в дополнительном коде старший разряд выделяется для хранения знака числа (единицы). В остальных разрядах записывается положительное число. Умножение и деление Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат. Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения. Для иллюстрации умножим 1100112 на 1011012. Регистр 1 Регистр 2 (результаты промежуточных Сложений) Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя. (В рамках школьной программы не рассматривается) Закрепление полученных знаний. Задание 1. Запишите уменьшающийся ряд чисел +3, +2,..., -3 в однобайтовом формате:
Решение: а) 00000011, 00000010, 00000001, 00000000, 10000001, 10000010, 10000011; б) 00000011, 00000010, 00000001, 00000000, 11111110, 11111101, 11111100; в) 00000011, 00000010, 00000001, 00000000, 11111111, 11111110, 11111101.
Задание 2. Запишите числа в прямом коде (формат 1 байт): а) 31; б) -63; в) 65; г) -128. Решение:
а) 00001111; б) 10111111; в) 01000001; г) невозможно.
Задание 3. Запишите числа в обратном и дополнительном кодах (формат 1 байт): а) -9; б) -15; в) -127; г) -128. Решение: Обратный: а) 11110110, б) 11110000, в) 10000000, г) невозможнo. Дополнительный: а) 11110111; б) 11110001; в) 10000001; г) 10000000. Задание 4. Найдите десятичные представления чисел, записанных в дополнительном коде: а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000. Решение: а) -8; б) -101; в) -23; г) -128.
Задание 5. Найдите десятичные представления чисел, записанных в обратном коде: а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000. Решение:
а) -23; б) -96; в) -84; г) -127.
Задание 6. (а, ж. и)
Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:
Решение:
Обратный: а) 00000111; б) 11111000; в) 11110011; г) 11100001; д) 00011001; е) 01111110; ж) переполнение; з) 10000000; и) невозможно. Дополнительный: а) 00000111; б) 11111001; в) 11110100; г) 11100010; д) 00011001; е) 01111110; ж) переполнение; з) 10000001; и) 10000000.
3. Домашнее задание: Угринович Н.Д. п. 2.9., стр.103-105. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |