АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уровень значимости и мощность критерия. Ошибки при проверке гипотез

Читайте также:
  1. A8 (базовый уровень, время – 2 мин)
  2. A8 (базовый уровень, время – 3 мин)
  3. B1 (базовый уровень, время – 1 мин)
  4. B7 (повышенный уровень, время – 2 мин)
  5. А1 (базовый уровень, время – 1 мин)
  6. А9 (базовый уровень, время – 2 мин)
  7. Активные (низший уровень)
  8. Алгоритм обратного распространения ошибки
  9. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  10. Базовый профессиональный уровень
  11. Базовый уровень
  12. Базовый уровень

При проверке статистической гипотезы возможны ошибки. Есть два рода ошибок.

Ошибка первого рода заключается в том, что отвергают нулевую гипотезу, в то время как в действительности эта гипотеза верна. Вероятность ошибки первого рода называется уровнем значимости и обозначается α.

Ошибка второго рода состоит в том, что принимают нулевую гипотезу, в то время как в действительности эта гипотеза неверна.

Обычно используют не вероятность ошибки второго рода, а ее дополнение до 1. Эта величина носит название мощности критерия. Итак, мощность критерия – это вероятность того, что нулевая гипотеза будет отвергнута, когда альтернативная гипотеза верна.

Понятия уровня значимости и мощности критерия объединяются в понятии функции мощности критерия – функции, определяющей вероятность того, что нулевая гипотеза будет отвергнута.

Наглядным способом интерпретации ошибок является их графическое представление.

Предположим, что проверяется гипотеза Н0: о равенстве среднего значения генеральной совокупности заданной величине (известной, например, из предыдущих экспериментов).

Для этого берется выборка объема n, находится ее среднее арифметическое и по его величине судят о справедливости гипотезы Н0.

Распределение среднего арифметического при условии, что верна гипотеза Н0, будет . Это распределение качественно представлено на рис. 4.1.

Распределение среднего арифметического при условии, что верна альтернативная гипотеза Н1: , буде уже другим — .

Будем считать, что гипотеза Н0 отвергается, если выборочное среднее арифметическое окажется больше некоторого критического значения, т. е. , как показано на рис.

Рис. 6.1. Ошибки первого и второго рода

Область непринятия гипотезы Н0 называется критической областью критерия. Она показана па рисунке наклонной штриховкой. Уровень значимости будет соответствовать площади критической области.

Вероятность ошибки второго рода будет равна площади под кривой распределения , показанной на рисунке. вертикальной штриховкой.

Величина называется мощностью критерия.

Исследователь всегда должен формулировать гипотезу и задавать уровень значимости до получения экспериментальных данных, по которым эта гипотеза будет проверяться.

При выборе уровня значимости исследователь исходит из практических соображений, отвечая на вопрос: какую вероятность ошибки он считает допустимой для его конкретной задачи?

Обычно считают достаточным уровень значимости 0,05 (5%), иногда 1% или 10%, редко 0,1%.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)