|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Графическое моделирование[3]; [4], Т. 2, c. 49-88
При решении огромного класса задач, связанных с планированием и управлением сложными процессами и системами, используется графическое моделирование, в частности методы критического пути (для более простых комплексов работ) и оценки и пересмотра планов (для более сложных и объемных процессов). Определяются основные понятия и определения теории графов, используемые для метода критического пути. Для системы сетевого планирования и управления рассматриваются элементы сетевой графической модели: работы и события. Определяются правила построения сетевых графиков, понятия критический путь и резервы событий и работ. Для рассмотрения методики построения сетевого графика работы и нахождения его решения берется пример сетевого графика. На примере реализуется методика решения сетевого графа и построения масштабного сетевого графика. Исходя из используемых для выполнения работ ресурсов и, учитывая масштабный сетевой график, строится общий график распределения ресурсов, который оптимизируется по различным критериям. В качестве другой постановки задачи рассматривается задача определения кратчайшего пути на графе. На примере рассматривается методика нахождения кратчайшего пути на графе. Важным этапом при планировании комплекса работ является определение минимального покрытия множества объектов одной сетью. Таковыми являются задачи при создании каналов связи, в ходе строительства и реконструкции сети автомобильных дорог, прокладке трубопроводов и т.д. Постановка задачи о минимальном остове (покрытии). Исследование различных вариантов математической модели в зависимости от выбора критерия эффективности. Рассматривается методика определения минимального остова в зависимости от конкретной постановки задачи на примерах. Студент после изучения данной темы должен представлять методику сетевого планирования применительно к тем техническим процессам, которые реально происходят на производстве; знать основные элементы теории графов (применительно к методу критического пути); уметь строить сетевые графики процессов, находить критические пути, формировать масштабные (временные) сетевые графики, строить графики распределения ресурсов и, самое главное, уметь их оптимизировать. Кроме того, по изучению темы студент должен уметь находить кратчайший путь на графе, создавать сети и находить на них минимальное покрытие.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1. Определить основные понятия графического моделирования. 2. Какие работы и события рассматриваются в методе СПУ? 3. Определить основные параметры событий и работ. 4. Дать методику расчета ранних сроков наступления событий. 5. Дать методику определения поздних сроков наступления событий. 6. Методика построения масштабного сетевого графика. 7. Методика построения графика распределения ресурсов по различным критериям. 8. Методика оптимизации графика распределения ресурсов по различным критериям. 9. Методика определения кратчайшего пути на графе. 10. Дать постановку задачи о минимальном остове в зависимости от критерия оценки. 11. Методика определения минимального остова при различных постановках задач. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |