АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Хлучевые интерференционные схемы по методу деления амплитуды фронта волны.(полосы равного наклона)

Читайте также:
  1. II. Два подразделения общественного производства
  2. II. Управление персоналом структурного подразделения организации
  3. III Литературоведческие определения.
  4. III.Выпишите из абзацев 4, 5, 6 словосочетания, в которых определения выражены существительными, и переведите их на русский язык.
  5. IV. Обмен в пределах подразделения II. Необходимые жизненные средства и предметы роскоши
  6. IV.Оценка эффективности деятельности структурного подразделения организации
  7. VI. Вставьте в текст пропущенные слова и словосочетания. Дайте им определения.
  8. VI. Постоянный капитал подразделения I
  9. VI. ЭТАП Определения лица (группы лиц) принимающих решение.
  10. VII. Переменный капитал и прибавочная стоимость в обоих подразделениях
  11. VIII. Постоянный капитал в обоих подразделениях
  12. Абсолютная тупость сердца: понятие, методика определения. Границы абсолютной тупости сердца в норме. Изменения границ абсолютной тупости сердца в патологии.

Рассмотрим схему опыта Поля, в котором реализован метод деления амплитуды (рис. 3.4). Точечный монохроматический источник S находится над тонкой прозрачной плоскопараллельной пластинкой. Для любой точки наблюдения Р есть два луча, которые приходят в нее, отразившись соответственно от верхней и от нижней поверхности пластинки. (метод деления амплитуды световой волны)

Следовательно, область интерференции – все полупространство над пластинкой, то есть интерференционная картина не локализована. На удаленном экране, параллельном пластинке, можно наблюдать интерференционную картину в виде концентрических колец.

Если толщина пластинки h a b << +, то угол α схождения интерферирующих лучей достаточно мал, так же как и угол Ω между этими лучами на выходе из источника. Поэтому поперечные размеры источника могут быть в принципе достаточно большими

При наблюдении в опыте Поля интерференционной картины на бесконечности (например, в фокальной плоскости собирающей линзы, см. рис. 3.5) апертура интерференции Ω ≈ 0, что означает отсутствие ограничений на размер D источника. В этом случае, с учетом закона преломления (nsin sin θ′ = θ), оптическая разность хода интерферирующих лучей 1 и 2 равна

Δ = θ = − θ 2 cos 2 sin nh h n ′ (3.22)

и не зависит от угла θ и от положения источника S. С учетом изменения на π фазы волны при отражении от верхней границы (луч 1 отражается от оптически более плотной среды), для разности фаз ϕ интерферирующих лучей имеем:

ϕ (θ) =kΔ ± π = ± π

Соответствующая интерференционная картина получила название

"полос равного наклона".

В случае протяженного источника интерференционная картина локализована в бесконечности. Если, однако, пластинка достаточно тонкая, то можно наблюдать интерференционную картину вблизи передней отражающей поверхности пластинки. Для лучей 1 и 2 разность фаз ϕ в точке Р (при условии h << a) может быть оценена с помощью формулы (3.23) для различных точек протяженного источника. Впрочем, если θ изменяется в достаточно узком интервале Δθ, то ϕ = ϕ(h), а наблюдаемую интерференционную картину называют "полосами равной толщины".


 

Кольца Ньютона

КОЛЬЦА НЬЮТОНА - интерференц. полосы равной толщины в форме колец, расположенных концентрически вокруг точки касания двух сферич. поверхностей либо плоскости и сферы. Впервые описаны в 1675 И. Ньютоном. Интерференция светапроисходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся поверхности; этот зазор играет роль тонкой плёнки (см. Оптика тонких слоев).Н.к. наблюдаются и в проходящем, и - более отчётливо - в отражённом свете. При освещении монохроматич. светом длины волны Н. к. представляют собой чередующиеся тёмные и светлые полосы (рис. 1). Светлые возникают в местах, где разность фаз между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равна (п = 1, 2, 3,...) (т. е. разность хода равна чётному числу полуволн). Тёмные кольца образуются там, где разность фаз равна Разность фаз лучей определяется толщиной зазора с учётом изменения фазы световой волны при отражении (см. Отражение света ). Так, при отражении от границы воздух - стекло фаза меняется на а при отражении от границы стекло - воздух фаза остаётся неизменной. Поэтому в случае двух стеклянных поверхностей (рис. 2), с учётом различий в условиях отражения от ниж. и верх. поверхностей зазора (потеря полуволны), т -етёмное кольцо образуется, если т. е. при толщине зазора Радиус rтт -го кольца определяется из треугольника А-О-С:

Откуда для тёмного m-го кольца rт= Это соотношение позволяет с хорошей точностью определять по измерениям rт. Если известна, Н. к. можно использовать для измерения радиусов поверхностей линз и контроля правильности формы сферич. и плоских поверхностей. При освещении немоно-хроматич. (напр., белым) светом Н. к. становятся цветными. Наиб. отчётливо Н. к. наблюдаются при малой толщине зазора (т. е. при использовании сферич. поверхностей больших радиусов).


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)