АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство неравенств путем определения знака разности их частей

Читайте также:
  1. A. Слідкувати за ознаками життя, вимити руки.
  2. III Литературоведческие определения.
  3. III.Выпишите из абзацев 4, 5, 6 словосочетания, в которых определения выражены существительными, и переведите их на русский язык.
  4. VI. Вставьте в текст пропущенные слова и словосочетания. Дайте им определения.
  5. VI. ЭТАП Определения лица (группы лиц) принимающих решение.
  6. Абсолютная тупость сердца: понятие, методика определения. Границы абсолютной тупости сердца в норме. Изменения границ абсолютной тупости сердца в патологии.
  7. Акцизы: налогоплательщики и объекты налогообложения. Особенности определения налоговой базы при перемещении подакцизных товаров через таможенную границу РФ.
  8. В функции определения
  9. В ходе производства очной ставки возникают многочисленные проблемы. Существует проблема принятия решения о целесообразности проведения очной ставки и выбор момента ее проведения.
  10. Валидность теста: типы и способы определения
  11. Вещи индивидуально-определенные и вещи, определенные родовыми признаками; вещи, находящиеся в обороте, и вещи, находящиеся вне оборота.
  12. Возрастное неравенство

Основные методы доказательства неравенств.

Задачи на доказательство неравенств особенные. Конкретных особых подходов здесь нет. Одно и тоже неравенство можно доказать различными способами. Разберем теперь наиболее часто встречающие приемы установления истинности неравенств с переменными, продемонстрировав соответствующие идеи и методы на конкретных примерах. В дальнейшем речь пойдет о неравенствах справедливость которых требует доказать на заданном множестве значений переменных. Если такое множество неуказанно, то подразумевается, что эти переменные могут принимать любые действительные значения.

Доказательство неравенств путем определения знака разности их частей.

Этот метод исследования неравенств по другому называют «Доказательство неравенств с помощью определения». Определение сравнения двух действительных чисел было приведено выше. По определению считается, что A>B, если (A-B) – положительное число. Поэтому для доказательства неравенства f(a, b…k) > g(a, b…k) на заданном множестве значений a, b…k – достаточно составить разность f(a, b…k) и убедится в том, что она положительна при заданных значениях a, b…k. Именно этим способом доказано выше неравенство Коши и некоторые свойства неравенств.

^ 5. Доказательство неравенств с помощью использования ранее доказанных и очевидных неравенств.


Этот метод еще носит название метод синтеза. Суть этого метода заключается в синтезировании неравенства, которое требует обосновать из опорных (базисных) неравенств «законными» средствами, проистекающими из свойств числовых неравенств и методов их установления.

Опорными неравенствами являются, например, такие:

1) , где x≥0, y≥0 (неравенство Коши);2) x+ ≥2, где x>0 3) -1 ≤ sin ≤1; 4) -1 ≤ cos ≤1; 5) а2≥0 6) ≥2, где ab>0.

7) (a-c)2+(b+d)2≥0, a,b,c,d - действительные числа 8) /2/2, 0< <π/2 9) sin /2< /2, 0< <π/2

^ 6. Метод оценивания

При решении многих задач, в частности, при рассмотрении различных функций особую роль играет оценка значения вы­ражения сверху или снизу, т. е. указание верхней или ниж­ней границы выражения. Никаких универсальных способов для нахождения такой оценки не существует, так что поиск нужной оценки является чисто эвристической, можно ска­зать, творческой работой. Оценка часто необходима не только для доказательства «готового», заданного неравенства, но и для сравнения числовых выражений, когда истинное неравен­ство требуется установить самостоятельно.

^ 7. Доказательство неравенств методом от противного.

Суть этого метода заключается в следующем. Пусть нужно доказать истинность неравенства f(x;y;z)>g(x;y;z).

Предполагают противное, т.е. что хотя бы для одного набора переменных справедливо неравенство f(x;y;z)≤g(x;y;z).

Используя свойства неравенств, выполняют преобразования последнего неравенства. Если в результате этих преобразований получается ложное неравенство, то это означает, что предположения о справедливости неравенства неверно, а поэтому верно исходное неравенство.

^ 8. Доказательство неравенств методом математической индукции.

При доказательстве неравенств часто прибегают к методу математической индукции. Доказательство при помощи метода математической индукции того, что некоторое утверждение, в которое входят натуральные числа n верно, состоит из доказательства двух шагов:

Шаг 1. Утверждение верно при n=1.

Шаг 2. Из справедливости утверждения для какого – либо произвольного натурального n=к следует его справедливость для следующего натурального n=к+1. Если обе эти теоремы доказаны, то на основании принципа (аксиомы) математической индукции заключаем, что утверждение верно для любого натурального n. Если надо доказать утверждение не для всех натуральных n, а лишь начиная с некоторого натурального m>1, то доказательство проводится так:

1.
Доказывается, что утверждение верно при n=m;

2.
Доказывается, что из справедливости утверждения при n=к, где к≥ m, вытекает, что оно верно и при n=к+1.

 

^ 9. Метод использования тождеств.


^ 10. Метод ведения новых переменных (метод подстановки)

 

^ 11. Метод интерпретации или моделей.

Рассмотрим неравенства доказательство которых можно получить, используя хорошо известные неравенства треугольника. Вспомним, что для любых трех точек A,B,C справедливо соотношение (А, С)≤ (А, В)+ (В, С), где символом (M, N) обозначено расстояние от точки М до точки N.

^ 12. Метод интерпретации или моделей.

Рассмотрим неравенства доказательство которых можно получить, используя хорошо известные неравенства треугольника. Вспомним, что для любых трех точек A,B,C справедливо соотношение (А, С)≤ (А, В)+ (В, С), где символом (M, N) обозначено расстояние от точки М до точки N.


^ 13 Функционально – графические методы доказательство неравенств.

Это метод доказательства неравенств с помощью введения вспомогательных функций, с целью использования их свойств монотонности, т.е. возрастания или убывания, а также знание точек максимума, или минимума функции. Это позволяет сравнивать значение функции в различных точках области определения или на определенном промежутке.

^ 14. Метод уменьшения числа переменных в неравенстве и понижения степени неравенства.

При доказательстве неравенства из примера 33 был продемонстрирован способ уменьшения числа переменных, рассмотрение следующих двух примеров обогатит наши знания еще одним достижением того же.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)