|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ПОСТАНОВКА ЗАДАЧИ НАХОЖДЕНИЯ РЕГРЕССИОННОЙ ЗАВИСИМОСТИ МЕЖДУ ВЕЛИЧИНАМИ ПО ИХ НАБЛЮДЕННЫМ ЗНАЧЕНИЯМ.КОРРЕЛЯЦИОННОЕ ПОЛЕЭКОНОМ.ВОПРОСЫ,ПРИВОДЯЩИЕ К ЗАДАЧАМ ЭКОНОМЕТРИКИ. Эконометрикой называется наука, позволяющая анализировать связи между различными экономическими показателями на основании реальных статистических данных с применением методов теории вероятностей и математической статистики. С помощью эконометрики выявляют новые, ранее неизвестные связи, уточняют или отвергают гипотезы о существовании определенных связей между экономическими показателями, предлагаемые экономической теорией. Основная цель эконометрики заключается в модельном описании конкретных количественных взаимосвязей, обусловленных общими качественными закономерностями, выявленными в экономической теории. Основной предмет исследования эконометрики – это массовые экономические явления и процессы. Предметы исследования эконометрики и статистики являются весьма схожими, потому что эконометрика исследует массовые экономические явления и процессы, а статистика исследует массовые явления и процессы любой природы (в том числе и экономические). ПОСТАНОВКА ЗАДАЧИ НАХОЖДЕНИЯ РЕГРЕССИОННОЙ ЗАВИСИМОСТИ МЕЖДУ ВЕЛИЧИНАМИ ПО ИХ НАБЛЮДЕННЫМ ЗНАЧЕНИЯМ.КОРРЕЛЯЦИОННОЕ ПОЛЕ. Постановка задачи регрессионного анализа формулируется следующим образом. Имеется совокупность результатов наблюдений. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y* = f(x2 , x3 , …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные. Допущения: - количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей; - обрабатываемые ЭД содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов; - матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования. Функция f (x 2 , x 3 , …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться. Корреляционным полем называется множество точек {Xi, Yi} на плоскости XY
Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет положительный угол наклона (/), то имеет место положительная корреляция (пример на рисунке 6.3). Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет отрицательный угол наклона (\), то имеет место отрицательная корреляция (пример на рисунке 6.4). Если же в расположении точек нет какой-либо закономерности, то говорят, что в этом случае наблюдается нулевая корреляция. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |