|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Классическая формулировка Ц.П.ТПусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию. Обозначим последние μ и σ2, соответственно. Пусть . Тогда по распределению при , где N (0,1) — нормальное распределение с нулевым математическим ожиданием и стандартным отклонением, равным единице. Обозначив символом выборочное среднее первых n величин, то есть , мы можем переписать результат центральной предельной теоремы в следующем виде: по распределению при . 18.МОДЕЛЬНОЕ УРА-Е РЕГРЕССИИ……. Корреляционной зависимостью между двумя переменными величинами называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой. Корреляционная зависимость может быть представлена в виде: Мх(Y)=φ(x) (1) или МY(X)=φ(y) (2) Уравнения (1) и (2) называются модельными уравнениями регрессии (или просто уравнениями регрессии) соответственно Y по X и X по Y, функции φ(х) и ψ(у) - модельными функциями регрессии (или функциями регрессии), а их графики — модельными линиями регрессии (или линиями регрессии). Для точного описания уравнения регрессии необходимо знать условный закон распределения переменной при условии, что переменная примет значение , . В статистической практике такой информации получить не удается, т.к. обычно имеется выборка пар значений объема . В этом случае речь может идти о приближенном выражении, аппроксимации по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии - условная средняя переменной при фиксированном значении , - параметры кривой. При должна сходиться по вероятности к функции регрессии . Таким образом, эконометрическая модель имеет вид: где - наблюдаемое значение зависимой переменной, - объясненная часть, зависящая от значений объясняющих переменных, - случайная составляющая. В многомерном случае, когда х – вектор, , где - могут считаться как случайными, так и детерминированными. . Итак, чтобы получить достаточно достоверные и информативные данные о распределении какой-либо случайной величины, необходимо иметь выборку её наблюдений достаточно большого объема. Такие выборки представляют собой наборы значений - число наблюдений, - количество объясняющих переменных. Рассмотрим . Парная регрессия – уравнение связи двух переменных . Определение. Любое эконометрическое исследование начинается со спецификации модели, т.е. с формулировки (выбора) вида модели, исходя из соответствующей теории связи между переменными. Различают линейные и нелинейные регрессии. Нелинейные регрессии делят на два класса: регрессии, нелинейные относительно включенных объясняющих переменных, но линейных по оцениваемым параметрам, и, регрессии, нелинейные по оцениваемым параметрам. Линейная: . Нелинейные по объясняющим параметрам: Регрессии, нелинейные по оцениваемым параметрам: Степенная: Показательная: Экспоненциальная: Логарифмическая: Полулогарифмическая: Обратная: Если у нас есть набор значений двух переменных и то на плоскости эти значения можно отобразить точками, таким образом получаем поле корреляции, которое изображено на рис. 1.
Рис.1. Поле корреляции 20.Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия. Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия. Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле: где хi — групповая средняя; Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию). Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле: Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |