АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

НОРМАЛ.РАСПР-ИЕ И ЕГО МЕСТО В РЕГРЕССИОННОМ АНАЛИЗЕ

Читайте также:
  1. C. Место выступления
  2. Exercises for Lesson 2. Possessions / Личные вещи. Лексика. Множественное число. Притяжательные прилагательные. Притяжательные местоимения.
  3. Exercises for Lesson 2. Possessions / Личные вещи. Лексика. Множественное число. Притяжательные прилагательные. Притяжательные местоимения.
  4. II. Место дисциплины в структуре ООП ВПО
  5. III. Изучение геологического строения месторождений и вещественного состава руд
  6. Instead of reading he went to the movies. Вместо чтения он пошел в кино.
  7. Who is here? Кто здесь? Местоимение who стоит в именительном падеже и является подлежащим.
  8. Автоматизированное рабочее место (АРМ) таможенного инспектора. Назначение, основные характеристики АРМ. Назначение подсистемы «банк - клиент» в АИСТ-РТ-21.
  9. Анализе деятельности организаций здравоохранения.
  10. Белки плазмы крови, место их синтеза, биологическая роль. Изменение белкового спектра сыворотки при различных заболеваниях. Белки острой фазы.
  11. Благая весть вместо доброго совета
  12. В частности, несоответствие волеизъявления и воли имеет место в случаях: а) мысленной оговорки, б) шутки, вообще несерьезного изъявления воли и в) симуляции.

Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса.
Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.


 

( - max

= а - , x = а + - точки перегиба.

СВОЙСТВА НОМРАЛЬНОГО РАСПРЕДЕЛЕНИЯ

График плотности нормального распределения называется нормальной кривой или кривой Гаусса.
Нормальная кривая обладает следующими свойствами:
1) Функция определена на всей числовой оси.
2) При всех х функция распределения принимает только положительные значения.
3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х, значение функции стремится к нулю.
4) Найдем экстремум функции.


Т.к. при y’ > 0 при x < m и y’ < 0 при x > m, то в точке х = т функция имеет максимум, равный .
5) Функция является симметричной относительно прямой х = а, т.к. разность
(х – а) входит в функцию плотности распределения в квадрате.
6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

 

Правило трех сигм

 

Преобразуем формулу

Введем обозначение

Тогда получим:

Если t=3, то

т. е. вероятность того, что отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027=1-0,9973. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий можно считать практически невозможными. В этом и состоит сущность правила трех сигм:

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математиче­ского ожидания не превосходит утроенного среднего квадратического отклонения.

На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)