АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ВИДЫ НЕЛИН.РЕГРЕССИИ И МЕТОДЫ НАХОЖДЕНИЯ ИХ ПАРАМЕТРОВ

Читайте также:
  1. I. Расчет параметров железнодорожного транспорта
  2. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  3. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  4. II. Расчет параметров автомобильного транспорта.
  5. III. Методы оценки функции почек
  6. III. Расчет параметров конвейерного транспорта.
  7. III. Ценности практической методики. Методы исследования.
  8. IV. Методы коррекции повреждений
  9. VI. Беззондовые методы исследования
  10. VI. Современные методы текстологии
  11. а) Графические методы
  12. Административно - правовые формы и методы деятельности органов исполнительной власти

Нелинейные по объясняющим параметрам:

Регрессии, нелинейные по оцениваемым параметрам:

Степенная:

Показательная:

Экспоненциальная:

Логарифмическая:

Полулогарифмическая:

Обратная:

32….

33….

Уравнение множественной регрессии в стандартизованном масштабе:

,

где - стандартизованные переменные

β - стандартизованные коэффициенты регрессии.

, , для которых среднее значение равно нулю: , a среднее квадратическое отклонение равно единице: ;

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида:

Решая его методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (β - коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор хi изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии βi сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой.

В парной зависимости стандартизованный коэффициент регрессии является линейным коэффициентом корреляции ryx.Подобно тому, как в парной зависимости стандартизованный коэффициент регрессии и корреляции связаны между собой, так и во множественной регрессии коэффициенты «чистой регрессии» bi связаны со стандартизованными коэффициентами регрессии βi, а именно:

Это позволяет от уравнения регрессии в стандартизованном масштабе

переходить к уравнению регрессии в натуральном масштабе переменных:

.

Параметр а определяется как

.

Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением βi.

При двухфакторном анализе для уравнения регрессии в стандартизованном масштабе β-коэффициентымогут быть определены с помощью коэффициентов частной корреляции по формулам:

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид

,

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяется параметры lga, b1, b2,…, bp. Потенцируя значение lga, найдем параметр а и соответственно общий вид уравнения степенной функции.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)