АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Простой трубопровод

Читайте также:
  1. The Pipeline («Трубопровод»), парк развлечений LaQua, Япония
  2. Визначення витрати рідини в трубопроводі при заданих необхідному напорі і його діаметрі
  3. Визначення діаметра трубопроводу.
  4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПРОСТЫХ ТРУБОПРОВОДОВ
  5. Гидравлический расчет сложного трубопровода. Обобщенные параметры трубопроводов. Характеристика сети.
  6. Гидравлический расчет трубопроводов. Гидравлический удар.
  7. Гидравлический расчет трубопроводов. Классификация трубопроводов, основные расчетные зависимости. Расчет простого трубопровода.
  8. Гидравлический расчет трубопроводов. Классификация трубопроводов,основные расчетные зависимости. Расчет простого трубопровода.
  9. Гидравлический удар в трубопроводах
  10. Глава 2. Простой способ произвести хорошее впечатление.
  11. Глава 2.Простой способ произвести хорошее впечатление.
  12. Діафрагма – це пластинка з отвором в центрі, що встановлюється в трубопроводі для вимірювання _______ рідини.

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым

трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений.

При напорном движении жидкости простой трубопровод работает полным

сечением = const. Размер

сечения трубопровода (диаметр или ве­личина гидравлического радиуса), а так­же его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками тру­бопровода являются расход жидкости в трубопроводе Q и напор (на головных сооруже­ниях трубопровода, т.е. в его начале). Большинство других характеристик простого тру­бопровода являются, не смотря на их важность, производными характеристиками. По­скольку в простом трубопроводе расход жидкости транзитный (одинаковый в начале и конце трубопровода), то средняя скорость движения жидкости в трубопроводе постоянна . Для установившегося движения жидкости по трубопроводу средняя скорость движения жидкости определяется по формуле Шези:

5

где: - скоростной коэффициент Шези,

- гидравлический радиус сечения, для круглого сечения при полном заполнении жидкостью

- гидравлический уклон.

Полагая, что весь имеющийся напор на головных сооружениях (в начале) трубопро­вода тратится на преодоление сил трения в трубопроводе (в простом трубопроводе это по­тери напора по длине ), уравнение движения жидкости (Бернулли) примет вид:

Расход жидкости в трубопроводе:

Обозначив: , получим основное уравнение простого трубопровода:

где: К - модуль расхода - расход жидкости в русле заданного сечения при гид­равлическом уклоне равном единице (иначе модуль расхода называют расходной характе­ристикой трубопровода). Другой и более известный вид основного уравнения простого трубопровода получим, решив уравнение относительно напора:

Величину называют удельным сопротивле­нием трубопровода, - - его полным сопротив­лением

График уравнения простого трубопровода носит название его гидравлической харак­ теристики. Вид гидравлической характеристики зави­сит от режима движения жидкости в трубопроводе: при ламинарном движении жидкости гидравлическая характеристика трубопровода - прямая линия, проходящая через начало координат (1). При турбулентном режиме гидравлическая характеристика - парабола (2).

Если на трубопроводе собранном из труб одинакового диаметра имеются местные сопротивления, то такой трубопровод можно привести к простому трубопроводу эквива­лентной длины

8.3. Сложные трубопроводы

К сложным трубопроводам следует относить те трубопроводы, которые не подходят к категории простых трубопроводов, т.е к сложным трубопроводам следует отнести:

трубопроводы, собранные из труб разного диаметра (последовательное соедине­ние трубопроводов),

трубопроводы, имеющие разветвления: параллельное соединение трубопроводов, сети трубопроводов, трубопроводы с непрерывной раздачей жидкости.

Последовательное соединение трубопроводов. При последовательном соединении

трубопроводов конец предыдущего просто­го трубопровода одновременно является началом следующего простого трубопрово­да. В сложном трубопроводе, состоящем из последовательно соединённых простых трубопроводов, последние в литературе на­зываются участками этого трубопровода. Расход жидкости во всех участках сложного трубопровода остаётся одинаковым Q = const. Общие потери напора во всём трубопрово­де будут равны сумме потерь напора во всех отдельных его участках.

где

- потери напора на - том участке трубопро-

вода.

Таким образом, потери напора в трубопроводе, состоящем из последовательно со­единённых друг с другом участков равны квадрату расхода жидкости в трубопроводе ум­ноженному на сумму удельных сопротивлений всех участков.

Гидравлическая характеристика трубопровода состоящего из последовательно со­единённых участков представляет собой графическую сумму (по оси напоров) гидравли­ческих характеристик всех отдельных участков. На рисунке кривая 1 представляет гид­равлическую характеристику 1-го участка трубопровода, кривая 2 - гидравлическую ха­рактеристику 2-го участка, кривая 3 - сумму гидравлических характеристик обеих участ­ков.

Сложный трубопровод, состоящий из последовательно соединённых простых трубо­проводов можно свести к простому трубопроводу с одинаковым (эквивалентным) диамет­ром, при этом длины участков будут пересчитываться, чтобы сохранить реальные гидрав­лические сопротивления участков трубопровода.

Так приведённая длина - того участка будет:

Общим методом решения задач является составление уравнения Бернулли для двух сечений трубопровода, расположенных последовательно по направлению движения потока:

(1)

В этом уравнении:

z – геометрический напор, т.е. расстояние по вертикали от центра тяжести сечения до произвольно выбранной горизонтальной плоскости, взятой в качестве плоскости сравнения;

p/rg – пьезометрический напор, т.е. отношение давления в данном сечении к удельному весу жидкости g=rg;

av2/2g – скоростной напор в данном сечении;

v – средняя скорость жидкости в указанном сечении;

a - коэффициент неравномерности распределения местных скоростей по сечению потока, выбираемый в зависимости от режима движения жидкости;

hп1-2 – потери напора между выбранными сечениями.

Расчеты с использованием уравнения Бернулли делятся на ряд характерных этапов:

3.1.1 Выбор положения плоскости сравнения

Обязательным требованием при выборе положения плоскости сравнения является ее горизонтальность, т.е. она должна быть перпендикулярна линии действия сил тяжести. Для упрощения расчетов и исключения возможных ошибок при определении геометрических напоров плоскость сравнения 0-0 выбирают таким образом, чтобы z2 = 0. Но иногда целесообразно выбирать и другие положения плоскости сравнения, например, вдоль оси горизонтальной части трубопровода. Пример выбора плоскости сравнения приведен на рисунке 1.

3.1.2 Выбор расчетных сечений

Часто уравнение Бернулли применяют для определения разности пьезометрических напоров, под действием которых жидкость с заданным расходом Q движется в напорных трубопроводных системах. Если же напор известен, то по уравнению определяют расход жидкости или необходимый диаметр трубопровода. Для сокращения числа неизвестных величин, входящих в уравнение (1), целесообразно сечения 1-1 и 2-2 выбирать таким образом, чтобы наибольшее количество членов уравнения было известно, или же легко определялось. Величины давлений выбирают как в абсолютных, так и в относительных значениях, но в идентичных значениях для обоих сечений. Если в сечении 1-1 выбрана величина избыточного давления, то и в сечении 2-2 тоже должно быть указано избыточное давление. В тех случаях, когда в одном из сечений давление равно атмосферному, давления удобно выбирать в избыточных значениях.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)