|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Числовые характеристики случайных величинЗакон распределения полностью характеризует случайную величину. Чтобы определить закон распределения случайной величины, достаточно задать ее плотность вероятности или функцию распределения. Однако, для решения многих практических задач достаточно знать лишь некоторые числа, характеризующие распределение, так называемые числовые характеристики случайной величины. Из числовых характеристик наиболее часто используются моменты случайной величины. Первый момент называется математическим ожиданием (или средним случайной величины) и вычисляется по одной из следующих формул (первая формула применяется для дискретных случайных величин, а вторая — для непрерывных): MX=∑xipi MX=∫xf(x)dx Величина MX характеризует среднее положение значений случайной величины X. Второй центральный момент характеризует разброс значений случайной величины вокруг значения MX и называется дисперсией. Дисперсия DX (часто также используют обозначение σ2 или σх2) вычисляется по формулам (первая формула применяется для дискретных случайных величин, а вторая — для непрерывных) Равномерное непрерывное распределение. Непрерывная случайная величина ξ имеет равномерное распределение в интервале (a,b), если её функция плотности f(x) и распределения F(x) имеют вид:
или графически В этом случае числовые характеристики случайной величины ξ, принимающей значения x – математическое ожидание, дисперсия и среднее квадратичное отклонение соответственно будут: Если границы интервала a=0, b=1 то функции плотности и распределения имеют вид: а математическое ожидание M|ζ| = 1/2 и дисперсия D|ζ| = 1/12. Получить это распределение на цифровой ЭВМ невозможно, так как машина оперирует с n-разрядными числами. Поэтому на ЭВМ вместо непрерывной совокупности равномерных случайных чисел интервала (0, 1) используют дискретную последовательность 2n случайных чисел того же интервала. Закон распределения такой дискретной последовательности называют квазиравномерным распределением. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |