|
|||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Представление чисел в компьютереПредставление чисел в формате с фиксированной запятой. Целые числа в компьютере хранятся в памяти в формате с фиксированной запятой. В этом случае каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а «запятая» «находится» справа после младшего разряда, то есть вне разрядной сетки. Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 битов). Например, число А2 =111100002 будет храниться в ячейке памяти следующим образом: Максимальное значение целого неотрицательного числа достигается в случае, когда во всех ячейках хранятся единицы. Для n-разрядного представления оно будет равно 2n - 1. Определим диапазон чисел, которые могут храниться в оперативной памяти в формате целых неотрицательных чисел. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно нулю. Максимальное число соответствует восьми единицам и равно А = 1·27 +1·26 +1·25 + 1·24 + 1·23 + 1·22 + 1·21 + 1·20 = 1·28 - 1 = 25510. Диапазон изменения целых неотрицательных чисел чисел: от 0 до 255. Для хранения целых чисел со знаком отводится две ячейки памяти (16 битов), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1). Представление в компьютере положительных чисел с использованием формата «знак-величина» называется прямым кодом числа. Например, число 200210 = 111110100102 будет представлено в 16-разрядном представлении следующим образом: Максимальное положительное число (с учетом выделения одного разряда на знак) для целых чисел со знаком в n-разрядном представлении равно: А = 2n-1 - 1. Для представления отрицательных чисел используется дополнительный код. Дополнительный код позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2n - |A|. Дополнительный код представляет собой дополнение модуля отрицательного числа А до 0, так как в n-разрядной компьютерной арифметике: 2n - |А| + |А| = 0, поскольку в компьютерной n-разрядной арифметике 2n ≡ 0. Действительно, двоичная запись такого числа состоит из одной единицы и n нулей, а в n-разрядную ячейку может уместиться только n младших разрядов, то есть n нулей. Для получения дополнительного кода отрицательного числа можно использовать довольно простой алгоритм: Модуль числа записать в прямом коде в n двоичных разрядах. Получить обратный код числа, для этого значения всех битов инвертировать (все единицы заменить на нули и все нули заменить на единицы). К полученному обратному коду прибавить единицу. Запишем дополнительный код отрицательного числа -2002 для 16-разрядного компьютерного представления:
При n-разрядном представлении отрицательного числа А в дополнительным коде старший разряд выделяется для хранения знака числа (единицы). В остальных разрядах записывается положительное число 2n-1 - 1А|. Чтобы число было положительным, должно выполняться условие |А| ≤ 2n-1. Следовательно, максимальное значение модуля числа А в л-разрядном представлении равно: |А| = 2n-1. Тогда минимальное отрицательное число равно: А = - 2n-1 Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится четыре ячейки памяти — 32 бита). Максимальное положительное целое число (с учетом выделения одного разряда на знак) равно: А = 231 - 1 = 2 147 483 64710. Минимальное отрицательное целое число равно: А = - 231 = - 2 147 483 64810. Достоинствами представления чисел в формате с фиксированной запятой являются простота и наглядность представления чисел, а также простота алгоритмов реализации арифметических операций. Недостатком представления чисел в формате с фиксированной запятой является небольшой диапазон представления величин, недостаточный для решения математических, физических, экономических и других задач, в которых используются как очень малые, так и очень большие числа. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |