АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Представление числовой информации с помощью систем счисления

Читайте также:
  1. B. Взаимодействие с бензодиазепиновыми рецепторами, вызывающее активацию ГАМК – ергической системы
  2. C. Обладать незначительной системной биодоступностью
  3. CRM системы и их возможности
  4. D) по 20 бальной системе
  5. I ступень – объектив- центрическая система из 4-10 линз для непосредственного рассмотрения объекта и формирования промежуточного изображения, расположенного перед окуляром.
  6. II. Освоение техники микроскопии с иммерсионной системой.
  7. II. Світовий освітній простір і система освіти в Україні.
  8. III. Физиология специфических сенсорных систем
  9. IV. Настільні видавничі системи.
  10. IV. Поземельные книги и другие системы оглашений (вотчинная и крепостная системы)
  11. V. УЗАГАЛЬНЕННЯ Й СИСТЕМАТИЗАЦІЯ ЗНАНЬ
  12. VI. Система органов дыхания

Для записи информации о количестве объектов использу­ются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисле­ния. Алфавит систем счисления состоит из символов, кото­рые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хо­рошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Система счисления — это знаковая система, в ко­торой числа записываются по определенным пра­вилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В пози­ционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Римская непозиционная система счисления. Самой рас­пространенной из непозиционных систем счисления являет­ся римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).

Значение цифры не зависит от ее положения в числе. На­пример, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.

Величина числа в римской системе счисления определя­ется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется. Например, запись десятичного чис­ла 1998 в римской системе счисления будет выглядеть сле­дующим образом:

MCMXCVIII = 1000 + (1000 - 100) + (100 - 10) + 5 + 1 + 1 +1.

Позиционные системы счисления. Первая позиционная система счисления была придумана еще в Древнем Вавило­не, причем вавилонская нумерация была шестидесятерич­ной, то есть в ней использовалось шестьдесят цифр! Инте­ресно, что до сих пор при измерении времени мы используем основание, равное 60 (в 1 минуте содержится 60 секунд, а в 1 часе — 60 минут).

В XIX веке довольно широкое распространение получи­ла двенадцатеричная система счисления. До сих пор мы ча­сто употребляем дюжину (число 12): в сутках две дюжины часов, круг содержит тридцать дюжин градусов и так да­лее.

В позиционных системах счисления количествен­ное значение цифры зависит от ее позиции в числе.

Наиболее распространенными в настоящее время позици­онными системами счисления являются десятичная, двоич­ная, восьмеричная и шестнадцатеричная. Каждая позицион­ная система имеет определенный алфавит цифр и основание.

В позиционных системах счисления основание системы равно количеству цифр (знаков в ее ал­фавите) и определяет, во сколько раз различают­ся значения одинаковых цифр, стоящих в сосед­них позициях числа.

Десятичная система счисления имеет алфавит цифр, кото­рый состоит из десяти всем известных, так называемых араб­ских, цифр, и основание, равное 10, двоичная — две цифры и основание 2, восьмеричная — восемь цифр и основание 8, шестнадцатеричная — шестнадцать цифр (в качестве цифр используются и буквы латинского алфавита) и основание 16 (табл. 1).

 

Таблица 1. Позиционные системы счисления

Система счисления Основание Алфавит цифр
Десятичная   0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двоичная   0, 1
Восьмеричная   0, 1,2,3, 4, 5, 6, 7
Шестнадцатеричная   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А (10), В(11), С(12), D(13), Е(14), F(15)

Десятичная система счисления. Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается триж­ды, причем самая правая цифра 5 обозначает пять единиц, вторая справа — пять десятков и, наконец, третья справа — пять сотен.

Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. В десятичной системе цифра, находящаяся в крайней справа позиции (разряде), обозначает количество единиц, цифра, смещенная на одну позицию влево, — коли­чество десятков, еще левее — сотен, затем тысяч и так да­лее. Соответственно имеем разряд единиц, разряд десятков и так далее.

Число 555 записано в привычной для нас свернутой фор­ме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различ­ные степени числа 10.

В развернутой форме записи числа такое умножение за­писывается в явной форме. Так, в развернутой форме запись числа 555 в десятичной системе будет выглядеть следую­щим образом:

55510 = 5 102 + 5-101 + 5-10°.

Как видно из примера, число в позиционной системе счисления записывается в виде суммы числового ряда степе­ней основания (в данном случае 10), в качестве коэффициен­тов которых выступают цифры данного числа.

Для записи десятичных дробей используются отрицатель­ные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:

555,5510 = 5•102 + 5•101 + 5•10°+ 5•10-1 + 5•10-2.

В общем случае в десятичной системе счисления запись числа А10, которое содержит п целых разрядов числа и т дробных разрядов числа, выглядит так:

А10 = аn-1•10n-1 +... + ао•10°+а-1•101 +... + а-m•10-m.

Коэффициенты ai в этой записи являются цифрами деся­тичного числа, которое в свернутой форме записывается так:

A10n-1 an-2... a0, a-1...а-m.

Из вышеприведенных формул видно, что умножение или деление десятичного числа на 10 (величину основания) при­водит к перемещению запятой, отделяющей целую часть от дробной, на один разряд соответственно вправо или влево. Например:

555,5510• 10 = 5555,510;

555,5510: 10 = 55,55510.

Двоичная система счисления. В двоичной системе счисле­ния основание равно 2, а алфавит состоит из двух цифр (0 и 1). Следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1.

Например, развернутая запись двоичного числа может выглядеть так:

А2 = 1•22 + 0•21+ 1•20 + 0•2-1 +1•2-2.

Свернутая форма этого же числа:

А2 = 101,012.

В общем случае в двоичной системе запись числа А2, ко­торое содержит п целых разрядов числа и т дробных разря­дов числа, выглядит так:

А2 = аn-1 • 2n-1 + аn-2•2n-2 +... а0 • 20 + а-1 • 2-1 +... + а-m • 2-m.

Коэффициенты ai в этой записи являются цифрами (0 или 1) двоичного числа, которое в свернутой форме записывает­ся так:

A2=an-1аn-2... а0, а-1 а-2... а-m.

Из вышеприведенных формул видно, что умножение или деление двоичного числа на 2 (величину основания) приво­дит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево. Например:

101,012 • 2 = 1010,12;

101,012: 2 = 10,1012.

Позиционные системы счисления с произвольным осно­ванием.

Возможно использование множества позиционных систем счисления, основание которых равно или больше 2. В системах счисления с основанием q (g-ичная система счис­ления) числа в развернутой форме записываются в виде сум­мы степеней основания q с коэффициентами, в качестве ко­торых выступают цифры 0, 1, q-1:

Aq = an-1• qn-1 +an-2•qn-2+…+ a0•q0 + a-1•q-1 +...+ a-m• q-m.

Коэффициенты ai в этой записи являются цифрами числа, записанного в g-ичной системе счисления.

Так, в восьмеричной системе основание равно восьми (q = 8). Тогда записанное в свернутой форме восьмеричное

число A8 = 673,28 в развернутой форме будет иметь вид: А8 = 6•82 + 7•81 + 3•80 + 2•8-1

В шестнадцатеричной системе основание равно шестнад­цати (q = 16), тогда записанное в свернутой форме шестнад­цатеричное число А16 = 8A,F16 в развернутой форме будет иметь вид:

А16 = 8•161 + А•160 + F•16-1.

Если выразить шестнадцатеричные цифры через их деся­тичные значения (А=10, F=15), то запись числа примет вид:

А16 = 8•161 + 10•160 + 15•16-1.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)