|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Закон больших чисел. Неравенство ЧебышеваПредельная теорема – общее название ряда теорем теор. Вер. указывающие условия возникновения тех или иных закономерностей в рез-те большего числа факторов. Эти теоремы обычно делят на 2 категории – закон больших чисел и центральная предельная теорема Устойчивость среднего арифметического представляет собой содержание закона больших чисел, т.е. при очень большом числе случайных явлений их результат практически перестает быть случ. Вел и сможет быть передан с большей степенью определенности З-н больших чисел Рассм. Бесконечную последовательность случ. Вел. х1,х2,х3…хn, оказывается, что при достаточно широких предположениях относительно послед {xn} случ вел их среднего ариф. при больших n ведет себя почти как не случ вел. Опр. Последовательность случ. Вел {xn} имеющих мат. ожидание подчиняется з.б.ч. если для любого >0 выполняется соотношение =1 (1) Т.е. ср. арифм. Случ. Вел. с вероятностью весьма близкой к 1 отличается от средн. арифм их мат. Ожидания при достаточно больших n на сколь угодно малую величину. Чтобы выяснить какой должна быть последовательность для з.б. ч. Запишем (1) в др. виде для этого обозначим ср. арифм. Случ вел = M( = Т.е. мат ожидание ср. арифм случ. Вел. равно ср. арифм. их мат ожиданий. Тогда ф-лу(1)перепишем так =1 (1a) Или переходя к противоположному событию =0 (2) {Xn} подчиняется з.б.ч выполняется усл(2) для любого 0 Теорема(лемма) Чебышева: пусть Х неотриц. Случ. Вел. имещая мат. Ожидание тогда для любого t>0 выполняется неравенство P(X Док-во Ограничимся рассмотрением дискретной случ. вел Х. Пусть ее возможное значение будет Х1,Х2,Х3 принимают с вероятностями Р1,Р2,Р3… по усл. Все Хк>0 при всех к. Мы рассм. =P(X ч.т.д (3) для непрерывной случ. Вел.л д-во аналогично нуж. Только Pk заменить на вероятность попадания в инт-л Пояснение неравенство Чебышева дает весьма грубую оценку сверху что бывает полезно,т.к. быстро вычисляется. Однако это неравенство имеет большой теоретич. Интерес.т.к. оно стало вожным и удобным инструментом в теор. вер. можем заменить ее на P( при любом t 0, X не обязат. 0 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |