АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кодирование звуковой информации

Читайте также:
  1. Автоматический поиск инструмента и его кодирование
  2. Адаптивное кодирование.
  3. Алфавитный подход к измерению информации.
  4. Алфавитный подход к измерению информации.
  5. Аппаратура для проведения ультразвуковой терапии
  6. Блок 3. Кодирование информации.
  7. Блочное двоичное кодирование
  8. В13. Знание о дискретной форме представления числовой, текстовой, графической и звуковой информации.
  9. Ввод и редактирование информации. Exсel.
  10. Вихретоковые ИП. Фазовый метод выделения измерительной информации.
  11. Вы неоднократно говорили, что в России нет целенаправленной политики в области средств массовой информации.
  12. Глава 6. Кодирование

Из курса физики известно, что звук есть колебания среды. Чаще всего звуковые колебания с помощью микрофона легко преобразуются в электрические. Сигнал от микрофона очень слаб и нуждается в усилении, что на современном уровне развития техники проблемы также не представляет.

Раньше, в эпоху аналоговой записи звука, для сохранения полученного электрического сигнала его преобразовывали в ту или иную форму другой физической природы, которая зависела от применяемого носителя. Например, при изготовлении грампластинок сигнал вызывал механические изменения размеров звуковой дорожки, а для старых киноаппаратов звук на пленку наносился оптическим методом; наибольшее распространение в быту получил процесс магнитной звукозаписи. Во всех случаях интенсивность звука была строго пропорциональна какой-либо величине, например, ширине оптической звуковой дорожки, причем эта величина имела непрерывный диапазон значений.
Переход к записи звука в компьютерном виде потребовал принципиально новых подходов. Дело в том, что при цифровой записи зависимости интенсивности звука от времени возникает принципиальная трудность: исходный сигнал непрерывен, а компьютер способен хранить в памяти только дискретные. Отсюда следует, что в процессе сохранения звуковой информации она должна быть “оцифрована”, т.е. из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет специальный блок, входящий в состав звуковой карты компьютера, который называется АЦП — аналого-цифровой преобразователь.
Во-первых, АЦП производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксированные моменты времени (удобнее, разумеется, через равные временные промежутки). Частоту, характеризующую периодичность измерения звукового сигнала, принято называть частотой дискретизации. Вопрос о ее выборе не праздный, и ответ в значительной степени зависит от частотного спектра сохраняемого сигнала: существует специальная теорема Найквиста, согласно которой частота оцифровки звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала. Считается, что редкий человек слышит звук частотой более 20 000 Гц = 20 кГц; поэтому для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом принимают равной 22 кГц. Отсюда немедленно следует, что частота при таких требованиях должна быть не ниже 44 кГц3. Названная частота используется, в частности, при записи музыкальных компакт-дисков. Однако часто такое высокое качество не требуется, и частоту дискретизации можно значительно снизить. Например, при записи речи вполне достаточно частоты 8 кГц. Результат при этом получается хотя и не блестящий, но вполне. Хотя качество воспроизведения тем лучше, чем выше частота дискретизации, но и объем звуковых данных при этом тоже возрастает, так что оптимального “на все случаи” значения частоты не существует.

Во-вторых, АЦП производит дискретизацию амплитуды звукового сигнала. Это следует понимать так, что при измерении имеется “сетка” стандартных уровней (например, 256 или 65 536 — это количество характеризует глубину кодирования), и текущий уровень измеряемого сигнала округляется до ближайшего из них. Напрашивается линейная зависимость между величиной входного сигнала и номером уровня. Иными словами, если громкость возрастает в 2 раза, то интуитивно ожидается, что и соответствующее ему число возрастет вдвое. В простейших случаях так и делается, но, как показывает более детальное рассмотрение, это не самое лучшее решение. Проблема в том, что в широком диапазоне громкости звука человеческое ухо не является линейным. Например, при очень громких звуках увеличение или уменьшение интенсивности звука почти не дает эффекта, в то время как при восприятии шепота очень незначительное падение уровня может приводить к полной потере разборчивости. Поэтому при записи цифрового звука, особенно при 8-битном кодировании, часто используют различные неравномерные распределения уровней громкости, в основе которых лежит логарифмический.
Итак, в ходе оцифровки звука получается поток целых чисел, причем величина числа соответствует силе звука в данный момент.

Изложенный метод преобразования звуковой информации с целью хранения в памяти компьютера в очередной раз подтверждает уже неоднократно обсуждавшийся ранее тезис: любая информация в компьютере приводится к числовой форме и затем переводится в двоичную систему.
При воспроизведении записанного в компьютерный файл звука производится преобразование в противоположном направлении — из дискретной цифровой формы представления сигнала в непрерывную аналоговую, поэтому вполне естественно соответствующий узел компьютерного устройства называется ЦАП — цифроаналоговый преобразователь. Процесс реконструкции первоначального аналогового сигнала по имеющимся дискретным данным нетривиален, поскольку никакой информации о форме сигнала между соседними отсчетами не сохранилось. В разных звуковых картах для восстановления звукового сигнала могут использоваться различные способы. Наиболее наглядный и понятный из них состоит в том, что по имеющимся соседним точкам рассчитывается некоторая гладкая функция, проходящая через заданные точки, которая и принимается в качестве формы аналогового сигнала. Технические возможности современных микросхем позволяют для реконструкции формы сигнала производить весьма сложные вычисления. Выпускаются даже специализированные микропроцессоры, для которых в технической литературе принято название DSP (Digital Signal Processor) — процессоры цифровой обработки сигналов.
Результаты дискретизации звуковой информации, как и все остальные компьютерные данные, сохраняются на внешних носителях в виде файлов. Звуковые файлы могут иметь различные форматы. Рассмотрим наиболее распространенные из них.
Формат AU. Этот простой и распространенный формат на системах Sun и NeXT (в последнем случае, правда, файл будет иметь расширение SND). Файл состоит из короткого служебного заголовка (минимум 28 байт), за которым непосредственно следуют звуковые данные. Широко используется в Unix-подобных системах и служит базовым для Java-машины.
Формат WAVE (WAV). Стандартный формат файлов для хранения звука в системе Windows. Является специальным типом другого, более общего формата RIFF (Resource Interchange File Format); другой разновидностью RIFF служат видеофайлы AVI. Файл RIFF составлен из блоков, некоторые из которых могут, в свою очередь, содержать другие вложенные блоки; перед каждым блоком данных помещается четырех символьный идентификатор и длина. Звуковые файлы WAV, как правило, более просты и имеют только один блок формата.

MIDI — стандарт цифровой звукозаписи на формат обмена данными между электронными музыкальными инструментами.

Интерфейс позволяет единообразно кодировать в цифровой форме такие данные как нажатие клавиш, настройку громкости и других акустических параметров, выбор тембра, темпа, тональности и др., с точной привязкой во времени. В системе кодировок присутствует множество свободных команд, которые производители, программисты и пользователи могут использовать по своему усмотрению. Поэтому интерфейс MIDI позволяет, помимо исполнения музыки синхронизировать управление другим оборудованием, например, осветительным, пиротехническим и т.п.

Последовательность MIDI-команд может быть записана на любой цифровой носитель в виде файла, передана по любым каналам связи. Воспроизводящее устройство или программа называется синтезатором (секвенсором) MIDI и фактически является автоматическим музыкальным инструментом.

MP3 (более точно, англ. MPEG-1/2/2.5 Layer 3) — третий слой формата кодирования звуковой дорожки MPEG, лицензируемый формат файла для хранения аудиоинформации.

MP3 является одним из самых распространённых и популярных форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для оценочной передачи музыкальных произведений. Формат может проигрываться практически во всех популярных операционных системах, на большинстве портативных аудиоплееров, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.

В формате MP3 используется алгоритм сжатия с потерями, разработанный для существенного уменьшения размера данных, необходимых для воспроизведения записи и обеспечения качества воспроизведения звука очень близкого к оригинальному (по мнению большинства слушателей), хотя меломаны говорят об ощутимом различии. При создании MP3 со средним битрейтом 128 кбит/с в результате получается файл, размер которого примерно равен 1/11 от оригинального файла с CD-Audio. Само по себе несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с. MP3-файлы могут создаваться с высоким или низким битрейтом, который влияет на качество файла-результата. Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Данный метод называют кодированием восприятия. При этом на первом этапе строится диаграмма звука в виде последовательности коротких промежутков времени, затем на ней удаляется информация не различимая человеческим ухом, а оставшаяся информация сохраняется в компактном виде. Данный подход похож на метод сжатия, используемый при сжатии картинок в формат JPEG.


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)